• 제목/요약/키워드: Soil transmission

검색결과 160건 처리시간 0.028초

트랙터 변속기의 부하 스펙트럼 개발 (Development of a Load Spectrum of Tractor Transmission)

  • 김대철;김경욱;이주완
    • Journal of Biosystems Engineering
    • /
    • 제23권6호
    • /
    • pp.539-548
    • /
    • 1998
  • This study was intended to develop a load spectrum acting on a transmission of agricultural tractors. Transmission loads were measured at the input shaft of the transmission and final drive shaft of the tractors. The measurement were conducted in five field conditions at two speed levels under plowing operations in Korea. Two torque transducers were developed for the respective load measurements and other necessary instrumentations were made to collect the data and store them in a data logger. The time-histories of the torque loads were analyzed and transformed into the load spectra using the rainflow counting and Smith-Watson-Topper methods. Comparisons of the load spectra developed under different conditions were made to investigate their characteristics. The effects on the load levels of soil and plowing speeds were also investigated. Finally, a load spectrum combining the results of the spectrum analysis was developed and proposed as a load source for the reliability test of transmissions.

  • PDF

함수비에 따른 유동성 뒤채움재의 열저항 특성 (Thermal Resistant Characteristics of Accelerated Flowable Backfill Materials on Water Content)

  • 오기대;김대홍
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.1258-1263
    • /
    • 2010
  • Backfill material of buried electrical transmission cable should dissipate the heat as rapidly as it is generated, or high temperatures will lead thermal runaway. These problems could raise thermal resistance and recude trasmission efficiency. So Backfill material of buried electrical transmission cable should have not only structual safty but good thermal property. So, in this study, we performed thermal resistancy test for various materials such as sand, weathered soil, clay and mixed soil to analyze the thermal characteristics of CLSM(controlled low strength materials) for water content.

  • PDF

345kV 송전선로 철탑이 인근에 매설된 가스배관에 미치는 영향 (The Influence on GAS pipelines Buried in nearby Tower of 345kV Transmission Line)

  • 이현구;하태현;배정효;김대경
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 A
    • /
    • pp.349-351
    • /
    • 2001
  • Because of the continuous growth of energy consumption and also the tendency to site power lines and pipelines along the same route, the close proximity of power lines and buried metallic pipelines has become more and more frequent. Therefore there has been and still is a growing concern about possible hazards resulting from the influence of power lines on metallic pipelines. When a ground fault occurs in an electrical installation the current flowing through the earthing electrode produces a potential rise of the electrode and of the neighbouring soil with regard to a remote earth. This paper analyzes the effects of ground faults when the current will flow into the soil from the foot of 345kV transmission line tower.

  • PDF

사질토 지반의 상대다짐도 및 토층에 따른 연직지중응력 분포 특성 (Characteristics of Vertical Stress Distribution in Sandy Soil According to the Relative Compaction and Composition of the Soil Layer)

  • 남효석;이상호
    • 한국농공학회논문집
    • /
    • 제52권2호
    • /
    • pp.43-50
    • /
    • 2010
  • This study was carried out to evaluate the vertical stress properties in sandy soil according to changes of foundation condition in soil bin compacted three layers. The following conclusions and comparisons have been made based on careful analysis from theoretical and experimental methods. : When sandy soil subjected to circular uniform load, the vertical stress increments ($\Delta\sigma_z$) was increased as load increasing, the maximum values of $\Delta\sigma_z$ was achieved at the point loading axis, and $\Delta\sigma_z$ was not shown over at a distance of three times of loading plate width (B). The vertical stress increments were achieved largely at 80 % relative compaction (Rc) compared to 95 % relative compaction due to stress concentration in sandy soil. When sandy soil subjected to circular uniform load, the $\Delta\sigma_z$ differences between theoretical and experimental values as load increased were more increased and its maximum differences were achieved at stress axis. When gravel surface macadamized over sandy soil subjected to load, the $\Delta\sigma_z$ was concentrated to load axis as load increasing, so that macadamization will be decreased load transmission.

Green synthesis of silver nanoparticles to the microbiological corrosion deterrence of oil and gas pipelines buried in the soil

  • Zhi Zhang;Jingguo Du;Tayebeh Mahmoudi
    • Advances in nano research
    • /
    • 제15권4호
    • /
    • pp.355-366
    • /
    • 2023
  • Biological corrosion, a crucial aspect of metal degradation, has received limited attention despite its significance. It involves the deterioration of metals due to corrosion processes influenced by living organisms, including bacteria. Soil represents a substantial threat to pipeline corrosion as it contains chemical and microbial factors that cause severe damage to water, oil, and gas transmission projects. To combat fouling and corrosion, corrosion inhibitors are commonly used; however, their production often involves expensive and hazardous chemicals. Consequently, researchers are exploring natural and eco-friendly alternatives, specifically nano-sized products, as potent corrosion inhibitors. This study aims to environmentally synthesize silver nanoparticles using an extract from Lagoecia cuminoides L and evaluate their effectiveness in preventing biological corrosion of buried pipes in soil. The optimal experimental conditions were determined as follows: a volume of 4 ml for the extract, a volume of 4 ml for silver nitrate (AgNO3), pH 9, a duration of 60 minutes, and a temperature of 60 degrees Celsius. Analysis using transmission electron microscopy confirmed the formation of nanoparticles with an average size of approximately 28 nm, while X-ray diffraction patterns exhibited suitable peak intensities. By employing the Scherer equation, the average particle size was estimated to be around 30 nm. Furthermore, antibacterial studies revealed the potent antibacterial activity of the synthesized silver nanoparticles against both aerobic and anaerobic bacteria. This property effectively mitigates the biological corrosion caused by bacteria in steel pipes buried in soil.

투광율과 토양수분함량이 묘삼(苗蔘) 생육에 미치는 영향 (Effect of Light Transmission Ratio and Soil Moisture Content on Growth Characteristics of Seedling in Panax ginseng C. A. Meyer)

  • 이성우;김충국;현동윤;연병열;이광원;차선우
    • 한국약용작물학회지
    • /
    • 제16권4호
    • /
    • pp.207-210
    • /
    • 2008
  • 비닐하우스 내에서 일평균 투광율을 21.2%, 24.8%, 30.3%와 같이 3수준으로, 토양수분을 11.0%, 12.5%, 15.3%, 18.9%와 같이 4수준으로 조절하여 묘삼의 생육 및 수량을 조사한 결과는 다음과 같다. 엽록소 함량은 투광율이 낮은 조건에서 토양수분함량의 감소에 따라 완만히 감소되었으나 투광량이 높은 조건에서 토양수분함량이 낮아지면 엽록소 함량은 현저히 감소되었다.고온장해율은 투광율이 낮은 조건에서 토양수분함량이 11.0%처럼 매우 낮을 때에만 현저히 증가되었지만 투광량이 높은 조건에서는 토양수분함량의 감소에 따라 고온장해율은 급격히 증가되었다. 3.3$m^2$(칸)당 생근중, 주당 생근중 및 사용가능묘삼수는 투광율이 증가되고 토양수분함량이 감소될수록 뚜렷이 감소되었는데, 토양수분함량이 적절한 조건(18.9%)에서는 투광율이 증가되어도 묘삼수량의 감소는 적었으나 토양수분함량이 부족한 조건에서는 투광율이 증가될수록 묘삼수량은 현저히 감소되었다. 적변율은 투광율이 높고 토양수분함량이 많을 때 현저히 증가되었는데, 투광율이 높은 조건에서 토양수분함량이 감소되면 적변율도 차차 감소되었으며, 투광율이 낮은 조건에서 적변율은 토양수분함량에 따라 큰 변화를 보이지 않았다.

지반-구조물-설비 상호작용을 고려한 지진응답 특성에 관한 해석적 연구 (An Analytical Study on Seismic Response Characteristics Considering Soil-Structure-Equipment Interaction)

  • 오현준;김유석
    • 한국지진공학회논문집
    • /
    • 제27권6호
    • /
    • pp.253-263
    • /
    • 2023
  • Non-structural elements, such as equipment, are typically affixed to a building's floor or ceiling and move in tandem with the structure during an earthquake. Seismic forces acting upon non-structural elements traverse the ground and the building's structure. Considering this seismic load transmission mechanism, it becomes imperative to account for the interactions between soil, structure, and equipment, establishing seismic design procedures accordingly. In this study, a Soil-Structure-Equipment Interaction (SSEI) model is developed. Through seismic response analysis using this model, how the presence or absence of SSEI impacts equipment behavior is examined. Neglecting the SSEI aspect when assessing equipment responses results in an overly conservative evaluation of its seismic response. This emphasizes the necessity of proposing an analytical model and design methodology that adequately incorporate the interaction effect. Doing so enables the calculation of rational seismic forces and facilitates the seismic design of non-structural elements.

오이녹반모자이크바이러스의 토양전염 생태 및 윤작에 의한 방제 (Studies on the Soil Transmission of CGMMV and Its Control with Crop Rotation)

  • 박진우;장태호;송성호;최홍수;고숙주
    • 농약과학회지
    • /
    • 제14권4호
    • /
    • pp.473-477
    • /
    • 2010
  • 오이녹반모자이크바이러스(Cucumber green mottle mosaic virus; CGMMV)는 박과작물에 병을 일으키는 중요한 바이러스로 종자 및 토양전염을 하는 것으로 알려져 있다. 본 연구는 CGMMV의 토양전염 생태를 구명하고, 직접적인 화학적 방제방법이 없는 식물 바이러스의 특성을 고려하여 윤작이나 포장위생 등 경종적 방제법을 이용한 CGMMV의 방제전략에 대하여 고찰하였다. CGMMV는 기주식물이 없는 토양에서 17개월 동안 50% 정도의 활성을 유지하였으며, 토양 내에 존재하는 식물의 잔재물 속에서도 1년 이상 높은 활성을 유지하였다. 자연적인 상태에서 CGMMV의 토양전염율은 1.0~3.6%인 데 반해, 수박묘를 정식할 때 뿌리에 상처를 내어 정식한 결과 토양전염율이 12~36%로 증가하여 뿌리의 상처가 CGMMV의 토양전염에 크게 관여함을 알 수 있었다. 수박재배시 작부제계에 따른 CGMMV의 후대감염율을 분석한 결과 2000년에는 답전윤환지 7.3%, 연작지 76.8%, 2001년의 경우 답전유환지 6.1%, 연작지 50.2%로 답전윤환에 의한 윤작이 CGMMV의 피해경감에 효과가 있음을 알 수 있었다.

Effect of nano-stabilizer on geotechnical properties of leached gypsiferous soil

  • Bahrami, Reza;Khayat, Navid;Nazarpour, Ahad
    • Geomechanics and Engineering
    • /
    • 제23권2호
    • /
    • pp.103-113
    • /
    • 2020
  • Gypsiferous soils classified as problematic soils due to the dissolution of gypsum. Presence of gypsum in the soils texture subjected to steady flow can cause serious damages for the buildings, roads and water transmission canals. Therefore, researchers have conducted a series of physical, mechanical and microstructural laboratory tests to study the effect of gypsum leaching on the geotechnical properties of a lean clay containing 0%, 3%, 6%, 9%, 12%, and 15% raw gypsum. In addition, a combination of two nano-chemical stabilizers named Terrasil and Zycobond was used in equal proportions to stabilize the gypsiferous clayey samples. The results indicated that gypsum leaching considerably changed the physical and mechanical properties of gypsiferous soils. Further, adding the combination of Terrasil and Zycobond nano-polymeric stabilizers to the gypsiferous soil led to a remarkable reduction in the settlement drop, compressibility, and electrical conductivity (EC) of the water passing through the specimens, resulting in improving the engineering properties of the soil samples. The X-ray diffraction patterns indicate that stabilization by terrasil and zycobond causes formation of new peaks such as CSH and alteration of pure soil structure by adding raw gypsum. Scanning electron microscope (SEM) images show the denser texture of the soil samples due to chemical stabilization and decrease of Si/Al ratio which indicates by Energy dispersive X-ray (EDS) interpretation, proved the enhance of shear strength in stabilized samples.

Influence of multi-component ground motions on seismic responses of long-span transmission tower-line system: An experimental study

  • Tian, Li;Ma, Ruisheng;Qiu, Canxing;Xin, Aiqiang;Pan, Haiyang;Guo, Wei
    • Earthquakes and Structures
    • /
    • 제15권6호
    • /
    • pp.583-593
    • /
    • 2018
  • Seismic performance is particularly important for life-line structures, especially for long-span transmission tower line system subjected to multi-component ground motions. However, the influence of multi-component seismic loads and the coupling effect between supporting towers and transmission lines are not taken into consideration in the current seismic design specifications. In this research, shake table tests are conducted to investigate the performance of long-span transmission tower-line system under multi-component seismic excitations. For reproducing the genuine structural responses, the reduced-scale experimental model of the prototype is designed and constructed based on the Buckingham's theorem. And three commonly used seismic records are selected as the input ground motions according to the site soil condition of supporting towers. In order to compare the experimental results, the dynamic responses of transmission tower-line system subjected to single-component and two-component ground motions are also studied using shake table tests. Furthermore, an empirical model is proposed to evaluate the acceleration and member stress responses of transmission tower-line system subjected to multi-component ground motions. The results demonstrate that the ground motions with multi-components can amplify the dynamic response of transmission tower-line system, and transmission lines have a significant influence on the structural response and should not be neglected in seismic analysis. The experimental results can provide a reference for the seismic design and analysis of long-span transmission tower-line system subjected to multi-component ground motions.