• Title/Summary/Keyword: Soil survey results

Search Result 431, Processing Time 0.024 seconds

Investigation of seismic response of long-span bridges under spatially varying ground motions

  • Aziz Hosseinnezhad;Amin Gholizad
    • Earthquakes and Structures
    • /
    • v.26 no.5
    • /
    • pp.401-416
    • /
    • 2024
  • Long-span structures, such as bridges, can experience different seismic excitations at the supports due to spatially variability of ground motion. Regarding current bridge designing codes, it is just EC 2008 that suggested some regulations to consider it and in the other codes almost ignored while based on some previous studies it is found that the effect of mentioned issue could not be neglected. The current study aimed to perform a comprehensive study about the effect of spatially varying ground motions on the dynamic response of a reinforced concrete bridge under asynchronous input motions considering soil-structure interactions. The correlated ground motions were generated by an introduced method that contains all spatially varying components, and imposed on the supports of the finite element model under different load scenarios. Then the obtained results from uniform and non-uniform excitations were compared to each other. In addition, the effect of soil-structure interactions involved and the corresponding results compared to the previous results. Also, to better understand the seismic response of the bridge, the responses caused by pseudo-static components decompose from the total response. Finally, an incremental dynamic analysis was performed to survey the non-linear behavior of the bridge under assumed load scenarios. The outcomes revealed that the local site condition plays an important role and strongly amplifies the responses. Furthermore, it was found that a combination of wave-passage and strong incoherency severely affected the responses of the structure. Moreover, it has been found that the pseudo-static component's contribution increase with increasing incoherent parameters. In addition, regarding the soil condition was considered for the studied bridge, it was found that a combination of spatially varying ground motions and soil-structure interactions effects could make a very destructive scenarios like, pounding and unseating.

Survey on Concentration Characteristics of Polycyclic Aromatic Hydrocarbons in Soil in Seoul (서울시 토양 중 다환방향족탄환수소의 농도특성에 관한 연구)

  • Kim Dong-Hwan;Ok Gon
    • Journal of Environmental Science International
    • /
    • v.14 no.1
    • /
    • pp.71-80
    • /
    • 2005
  • Soil is one of the most fundamental elements as well as with water and air in studies associated with the environment, in addition, it is one of the important environmental mediums that constructs a basis of the bio­logical system and performs various roles of matter circulation. This study was carried out in Seoul, in May 2000 to evaluate variation in the concentration levels and distribution characteristics for PAH compounds in soil. Soil samples were collected from 33 sites covering traffic, factory, incineration and mountain groups and the PAHs were analyzed. The results show a wide dis­tribution range of PAHs concentrations between 14.66 ng/g and 1,219.35 ng/g. The highest concentration levels exist at Sungsu-2 of the factory group (FS-2). Daemo-3 of the Mountain group (MD-3) presents the lowest levels as compared with the other sites. PAH compounds including mutagenic and carcinogenic materials show high concentrations in the traffic and factory groups and a high ratio in the mountain group. Besides, these compounds absorbed with micro particles might be spread out over a wide region associated with particles' movement and diffusion. After principal component analysis of the soil samples, the results indicated that the sources of PAHs in the soil were divided into two groups, pesticides and vehicles.

The Ecological Management on Consideration of Vegetation Structure at Goduck Riverside Restoration Area in Hangang, Seoul (서울시 한강변 고덕 수변 생태복원지의 식물생태특성을 고려한 생태적 관리방안)

  • 이경재;한봉호;김정호;배정희
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.32 no.2
    • /
    • pp.86-101
    • /
    • 2004
  • This study was conducted to present the ecological management of Goduk Riverside Restoration Area in Hangang, Seoul by analyzing the change of the vegetation structure. The survey site was classified into three groups. These were the vegetation restoration area, the dry plant area, and the swampy plant area. There were 141 taxa including naturalized plants and 13 species recorded in 2001 and 258 taxa including naturalized plants and 42 species were recorded in 2003 by monitoring. Monitoring results showed that the alien plants such as Humulus japonicus expanded continuously except in the vegetation restoration area. It was found that the growing status of planted shrub plants were poor, and the naturalized plants status was thriving, and the soil environment was bad in the vegetation restoration area. The alien plants such as Humulus japonicus and Aster pilosus dominated continuously in the dry plant area. The swampy native herb plants number was decreased, but the Humulus japonicus community was expanded caused by the soil drying in the swampy plant area. Soil analysis showed that the soil acidity, the available phosphates and the concentration of calcium were highly effected by cultivation. We propose ecological management as follows based on the results of the change of vegetation and soil characteristics. The vegetation restoration area should be managed by visitor's characteristics. Replanting vegetations should be based on soil characteristics. The removal of naturalized plants and established monitoring with plots is also needed. In the dry plant area and the swampy plant area, naturalized plants need to be removed in order to facilitate bio-diversity and monitoring.

Landslide Susceptibility Analysis Using Artificial Neural Networks (인공신경망을 이용한 산사태 취약성 분석)

  • 이사로;류주형;민경덕;원중선
    • Economic and Environmental Geology
    • /
    • v.33 no.4
    • /
    • pp.333-340
    • /
    • 2000
  • The purpose of this study is to develop landslide susceptibility analysis techniques using artificial neural network and apply the newly developed techniques for assessment of landslide susceptibility to study areas, Yongin. Landslide locations detected from interpretation of aerial photo and field survey, and topographic, soil and geological maps of the Yongin area were collected. The data of the locations of land-slide, slope, soil texture, topography and lithology were constructed into spatial database using GIS. Using the factors, landslide susceptibility was analyzed by artificial neural network methods. The results of the analysis were verified using the landslide location data. The validation results showed satisfactory agreement between the susceptibility map and landslide location data.

  • PDF

Laboratory chamber test for prediction of hazardous ground conditions ahead of a TBM tunnel face using electrical resistivity survey (전기비저항 탐사 기반 TBM 터널 굴진면 전방 위험 지반 예측을 위한 실내 토조실험 연구)

  • Lee, JunHo;Kang, Minkyu;Lee, Hyobum;Choi, Hangseok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.451-468
    • /
    • 2021
  • Predicting hazardous ground conditions ahead of a TBM (Tunnel Boring Machine) tunnel face is essential for efficient and stable TBM advance. Although there have been several studies on the electrical resistivity survey method for TBM tunnelling, sufficient experimental data considering TBM advance were not established yet. Therefore, in this study, the laboratory-scale model experiments for simulating TBM excavation were carried out to analyze the applicability of an electrical resistivity survey for predicting hazardous ground conditions ahead of a TBM tunnel face. The trend of electrical resistivity during TBM advance was experimentally evaluated under various hazardous ground conditions (fault zone, seawater intruded zone, soil to rock transition zone, and rock to soil transition zone) ahead of a tunnel face. In the course of the experiments, a scale-down rock ground was provided using granite blocks to simulate the rock TBM tunnelling. Based on the experimental data, the electrical resistivity tends to decrease as the tunnel approaches the fault zone. While the seawater intruded zone follows a similar trend with the fault zone, the resistivity value of the seawater intrude zone decreased significantly compared to that of the fault zone. In case of the soil-to-rock transition zone, the electrical resistivity increases as the TBM approaches the rock with relatively high electrical resistivity. Conversely, in case of the rock-to-soil transition zone, the opposite trend was observed. That is, electrical resistivity decreases as the tunnel face approaches the rock with relatively low electrical resistivity. The experiment results represent that hazardous ground conditions (fault zone, seawater intruded zone, soil-to-rock transition zone, rock-to-soil transition zone) can be efficiently predicted by utilizing an electrical resistivity survey during TBM tunnelling.

Analysis of the Reinforcement Effect of Aging Reservoir Reinforced by Environmental Soil Stabilizer as Chemical Grouting Material (친환경 지반안정재를 약액주입재로 사용하여 보강한 노후 저수지의 보강효과 분석)

  • Kim, Se-Min;Seo, Se-Gwan;Cho, Dae-sung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.2
    • /
    • pp.1-11
    • /
    • 2021
  • In this study, a study related to laboratory and pilot test were performed to use an environmental soil stabilizer developed to induce a hardening reaction similar to that of Ordinary Portland Cement (OPC) by using industrial by-products of blast furnace slag and the combustion ash of a circulating fluidized bed boiler as the main material. For this, specimens were prepared using liquid A of sodium silicate and silica sol, and liquid B of an environmental soil stabilizer (or OPC), and laboratory tests were performed to analyze the strength and environmental characteristics. And pilot test was performed on the aging reservoir, field permeability test and electrical resistivity survey were performed in the field to analyze the applicability. As a result of the laboratory test, the homo-gel compressive strength of the chemical injection material using the environmental soil stabilizer as liquid B was about 2.88 to 3.23 times greater than that of OPC. In addition, the elution amount of most heavy metals was lower than that of OPC, and the survival rate in the fish, acute toxicity test was 100%. Therefore, when judged based on the results of the laboratory test, it was analyzed to be superior to OPC in terms of strength and environment. In the results of the pilot test in the aging reservoir, when the environmental soil stabilizer was reinforced with liquid B of the chemical injection material, the coefficient of permeability in the aging reservoir decreased to 1/50 level. In addition, as a result of the electrical resistivity survey, it was analyzed that the electrical resistivity inside the aging reservoir increased as time passed, the saturation zone disappeared, and the overall reinforcement.

Soil Physico-Chemistry and Saponins Content of Platycodon grandiflorum Radix Cultured from Different Sites in Gyeongnam Province (경남지방에서 도라지 재배지역별 토양이화학적 특성과 사포닌 함량)

  • Lee, Byung Jin;Jeon, Seung Ho;Lee, Shin Woo;Chun, Hyun Sik;Cho, Young Son
    • Korean Journal of Medicinal Crop Science
    • /
    • v.22 no.6
    • /
    • pp.463-468
    • /
    • 2014
  • This study was carried out in order to survey the soil physico-chemical, morphology and content of saponins of 5 year-old Platycodon grandiflorum radix from different areas in Gyeongnam. Soil physical properties was showed 1.01-1.29 of bulk density of soil and soil hardness was increased with increasing soil depth, especially below the 30 cm, however it was maintained or small increased below the 40 cm. T-N and OM contents of top soil were highest at Geochang as 0.27% and 56.9 g/kg, respectively, compared to other areas. The root length was longer at Kimhea and Geochang as 33.8 and 33.7 cm, respectively, and fresh weight was heavy at Geochang as 208.5 g. The contents of saponin of P. grandiflorum radix was higher in fine root compare to main root. By region, content of saponins of P. grandiflorum radix were higher at Hapcheon than other area. Mg content was highly negatively correlated at p < 0.01 with platycodin D3, deapioplatycodin D, platycodin D, and deapioplatycodin D ($-0.499^{**}$, $-0.433^{**}$, $-0.421^{**}$, $-0.511^{**}$ respectively). These results suggest that no-fertilized Mg effected on the improvement of saponin contents in P. grandiflorum.

Determination of Permissible Shear Stresses on Vegetation Mats by Soil Loss Evaluation (토양 손실 평가에 의한 식생매트의 허용 소류력 결정)

  • Lee, Du Han;Rhee, Dong Sop;Kim, Myounghwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5956-5963
    • /
    • 2013
  • By the activation of environment-friendly river works, application of vegetation mats is increasing, however, evaluation techniques for hydraulic stability of vegetation mats are not presented. This study is conducted to develop the objective test method for vegetation mats. Two kind of vegetation mats are tested by the real scale experiments, and hydraulic quantities are measured and analyzed to evaluate acting shear stresses. To evaluate soil loss, Terrestrial 3D LiDAR measurement is conducted and soil loss index are calculated from changes of bed elevation. Quantified evaluation for permissible shear stresses is conducted by graphical method for acting shear stresses and soil loss index. By the results of precision survey, changes of sub soil are limited to local range in stable cases and relatively large changes of sub soil which is similar to natural river bed are detected in unstable cases. From the study, evaluation of permissible shear stresses by ASTM D 6040 is avaliable in the failure mechanism and failure criteria by soil loss index.

Monitoring of bridge overlay using shrinkage-modified high performance concrete based on strain and moisture evolution

  • Yifeng Ling;Gilson Lomboy;Zhi Ge;Kejin Wang
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.2
    • /
    • pp.155-174
    • /
    • 2023
  • High performance concrete (HPC) has been extensively used in thin overlay for repair purpose due to its excellent strength and durability. This paper presents an experiment, where the sensor-instrumented HPC overlays have been followed by dynamic strain and moisture content monitoring for 1 year, under normal traffic. The vibrating wire and soil moisture sensors were embedded in overlay before construction. Four given HPC mixes (2 original mixes and their shrinkage-modified mixes) were used for overlays to contrast the strain and moisture results. A calibration method to accurately measure the moisture content for a given concrete mixture using soil moisture sensor was established. The monitoring results indicated that the modified mixes performed much better than the original mixes in shrinkage cracking control. Weather condition and concrete maturity at early age greatly affected the strain in concrete. The strain in HPC overlay was primarily in longitudinal direction, leading to transverse cracks. Additionally, the most moisture loss in concrete occurred at early age. Its rate was very dependent on weather. After one year, cracking survey was carried out by vision to verify the strain direction and no cracks observed in shrinkage modified mixes.

Evaluation of the Structural Stability of Rammed Earth Construction :The Case Restoration Project of the Stone Pagoda at Mireuksa Temple Site in Iksan

  • Min, Hwang-Sik;Choen, Deuk-Youm
    • Architectural research
    • /
    • v.20 no.3
    • /
    • pp.65-73
    • /
    • 2018
  • The restoration of foundations supporting the immense load of the stone pagoda at Mireuksa Temple Site prioritizes securing its structural stability. But so far, rammed earth construction is still not easy to determine the structural stability. This paper aims to emphasize that a scientific experimental study was conducted on a rammed earth construction, to identify its methodology and obtain objective data about structural stability of the foundation work. An experimental study fabricated specimens from the soil that had been removed during the excavation survey, determined the allowable bearing capacity through plate load tests, and compared the results with the predicted stress after reassembly of the stone pagoda to estimate the structural stability. Then, the repair method was selected based on the experimental study result. The evaluation method of the restoration of foundations consisted of an examination of the allowable bearing capacity and settlement. The allowable bearing of the reinforced foundation was more than twice the contact pressure under the stacked stones of the pagoda. The possibility of settlement of the rammed earth foundation soil layer during the pagoda assembly is expected to be very low because the settlement amount of the reformed soil layer is less than half of the settlement of the stabilized existing soil layer.