• Title/Summary/Keyword: Soil surface charge

Search Result 40, Processing Time 0.018 seconds

Effects of Soil Organic Matter on Surface Charge Characteristics of Paddy and Upland Soils (논과 밭 토양의 표면전하 특성에 미치는 토양 유기물 영향)

  • Lim, Sook-Il;Lee, Moon-Yong;Hyun, Seung-Hun;Lee, Sang-Eun;Jeong, Chang-Yoon;Kim, Jeong-Gyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.4
    • /
    • pp.414-419
    • /
    • 1998
  • The contribution of soil organic matter on the soil surface charge characteristic of paddy and upland soils weathered from granite or limestone was evaluated. The surface charge characteristics of the soils with and without soil organic matter by pre-treatment with hydrogen peroxide was determined at pH 3.5~9.0 range using the ion adsorption method. Regardless of soil organic matter removal, the soil surface negative charge increased linearly by the increase of pH with high statistical significance at all kinds of soils. Here, the differential increasement of soil surface negative charge by pH inclease, dCEC/dpH, was proposed as the parameter of pH dependency of the soil surface charge. The dCEC/dpH of soils with organic matter was in the range of 0.91~4.59, while it was dramatically decreased to the range 0.16~1.91 by the removal of organic matter. The soil surface charge derived from soil organic matter ranged from 15% to 82% to the total amount of surface charge. The magnitude of surface charge carried by 1% of soil organic matter showed considerable differences between soils from 0.22 to $5.03cmol^+\;kg^{-1}$. The effect of soil organic matte on the dCEC/dpH was higher in paddy soils with high oxalic acid extractable Fe than upland soils.

  • PDF

Comparison of the Ion Adsorption Method, Potentiometric Titraion and Backtitration Technique for Surface Charge measurement in Ultisol, Alfisol, and Inceptisol (Ultisol과 Alfisol 및 Inceptisol 토양에서 토양표면전하 측정에 사용된 이온흡착법, 전위차 적정법 및 역적정법간의 비교)

  • Lee, Sang-Eun;Neue, Heins Ulitz;Park, Jun-Kyu;Lim, Sookil H.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.26 no.3
    • /
    • pp.160-171
    • /
    • 1993
  • Surface charge characteristics of Ultisol(Luisiana soil from Philippines), Alfisol(Maahas soil from Philippines), and Inceptisol(Yongii soil from Korea) were studied by way of potentiometric titration, backtitration technique, and ion adsorption method(or CEC - AEC method). The PZNC(point of zero net charge) values determined by ion adsorption method were much lower than the natural pHs in all soils, indicating that all soil samples bore net negative surface charge. The PZSE (point of zero salt effect) values determined by potentiometric titration and backtitration technique were identical in Luisiana and Yongii soils but not in Maaghas soil. All soils showed higher PZSE values than PZNC values probably due to the influence of permanent negative charge. The permanent charge calculated by the theory of Uehara and Gillman (1980) occupied quite low portion of the CEC measured at pH 7 in all soils. Backtitration technique corrected errors of potentiometric titration at extreme pH. However, it still overestimate the surface charge compared with ion adsorption method. Therefore, the ion adsorption method was recommanded for the surface charge measurement of the usual soils which have high negative charge components.

  • PDF

Studies on the Surface Charge Characteristics of Two Inceptisols and One Aridsol in Hawaii (하와이 화산회(火山灰)로부터 발달한 Inceptisols과 Aridsol 토양(土壤)의 표면전하(表面電荷) 특성(特性)에 관(關)하여)

  • Lim, Sookil H.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.14 no.3
    • /
    • pp.110-116
    • /
    • 1981
  • Soil surface charge which manipulates some important soil physico-chemical properties such as nutrient and water holding abilities, colloidal stability and soil erosion was investigated in wide range of soil pH, using soils developed originally from same volcanic ash deposit but under different rainfall condition in Hawaii. The results can be summarized as follows : 1. Ustollic Camorthid (Kawaihae soil) which was developed under the lowest rainfall (less than 500 mm/yr) revealed low Z.P.C. (4.5-5.0) and less dependence of net charge on concentration of indifferent electrolytes. 2. Typic Hydrandepts (Akaka and Hilo soils) which were developed under the high rainfall (3050-7600 mm/yr) showed the Z.P.C. in between 5.5-7.0 and high dependence of net charge on concentration of indifferent electroytes. 3. It was found by X-ray diffraction together with total chemical analysis that amorphous materials were dominant (above 6.0%) in Typic Hydrandepts while dehydrated halloy-site (1 : 1 clay minerals) was dominant (45-50%) in Ustollic Camorthid. 4. In spite of little difference in particle size distribution of the soils, the difference of specific surface area was remarkable showing the order of Akaka (289) > Hilo (268) > Kawaihae (93). 5. It was evident, taking account of apparent field pH values, 5.2 of Akaka, 5.5 of Hilo and 7.0 of Kawaihae soil, respectively, that Akaka, and Hilo soils would show either positive or near zero (+ or 0) of ${\Delta}pH$ while Kawaihae soil would exhibit negative (-) of ${\Delta}pH$ at natural field condition.

  • PDF

Effects of Soil Component and Index ion on the Surface Charge Characteristics of some Korean arable soils (일부 경작지 토양의 표면전하 특성에 미치는 점토광물, 유기물 및 지표이온의 영향)

  • Ok, Yong-Sik;Choi, You-Suk;Lee, Sang-Eun;Lim, Soo-Kil;Chung, Nam-Hyun;Kim, Jeong-Gyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.4
    • /
    • pp.237-244
    • /
    • 2001
  • Investigation on the surface charge properties of some Korean arable soils was performed by ion adsorption technique with two kinds of indifferent ion ($Na^+$ and $K^+$) at the range of pH 3 to 9 in bulk solution. The contribution of soil components(organic matter, oxides and clay mineral) on the surface charge density was determined at two soil depth with different solid particle composition When the pH of solution increased, the negative charge of soil surface was increased among the all soils, but positive charge were not appeared above pH 6. apparently. The magnitude of surface charge density measured by NaCl adsorption method showed ra nges of $0.01{\sim}2.84cmol_c{\cdot}kg^{-1}$ and $7.41{\sim}12.20cmol_c{\cdot}kg^{-1}$ at pH 3 and pH 9, respectively. Ion adsorption method using KCl as index ion overestimated than the method using NaCl as index ion. The content of organic matter is the strongest factor on the value of dCEC/dpH.

  • PDF

Influence of Interaction of Surface Charges of PET Fiber and $\alpha$-Fe2O3 Particle on Detergency of Particulate Soil (PET섬유와 $\alpha-Fe_2O_3$ 입자의 표면전하간 상호작용이 고형오구의 세척성에 미치는 영향)

  • 강인숙
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.22 no.8
    • /
    • pp.1132-1140
    • /
    • 1998
  • The adhesion and removal of $\alpha$-Fe2O3 particles on the from PET fabric in NPE solution with different ionic strength were discussed in terms of interaction of surface charge of particle and substrate. The adhesion of $\alpha$-Fe2O3 particles to PET fabric and its removal from PET fabric were carried out by using water bath shaker and Terg-O-Tometer under various solution conditions. The ζ potential of PET fiber and $\alpha$-Fe2O3 particles in the detergent solution were measured by steaming potential and microelectrophoresis methods, respectively. The adhesion and removal amount of $\alpha$-Fe2O3 particles on the from PET fabric increased with increasing time of adhesion and removal, and the rates of adhesion and removal were high at the initial stage of adhesion and removal, and then the rates decreased with passing time. The adhesion and removal amount of $\alpha$-Fe2O3 particles on and from PET fabric increased with increasing pH of solution regardless ionic strength. The tendencies and degree of adhesion and removal were very similar regardless interaction of surface charge of particle and fiber. Therefore, in the presence of a surfactant and electrolyte, the influence of interaction of surface charge of particle and substrate on the detergency of particulate soil was small.

  • PDF

Effects of solution, sorbate, and sorbent chemistries on polycyclic aromatic hydrocarbon sorption to hydrated mineral surfaces

  • Yim, Soobin
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.132-135
    • /
    • 2003
  • Solution chemistry, sorbate chemistry, and sorbent chemistry were widely investigated to find important factors that affect PAH sorption on mineral surfaces and to elucidate its microscopic mechanism. The solution chemistry, pH and ionic strength caused measurable change of HOC sorption reaction to minerals. The detectable change of Ka occurred at a pH region crossing the PZC (Point of Zero Charge) of each mineral. The PAH hydrophobicity, one of sorbate chemistry, was observed to have a strong correlation with PAM sorption to mineral. Mineral surface area was not found to be a predominant factor controlling PAH sorption. The mineral type might be more likely to play a crucial role in controlling the PAH sorption behavior. The CEC (Cation Exchange Capacity) of mineral, representing surface charge density, has meaningful correlation with regression slope of sorption coefficients (log $K_{d}$) versus aqueous activity coefficients (log Υ$_{w}$).).).

  • PDF

Effect of Minerals surface characteristics On Reduction Dehalogenation of chlorination solvents in water-FeS/FeS$_2$ system

  • 김성국;허재은;박세환;장현숙;박상원;홍대일
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.05a
    • /
    • pp.108-111
    • /
    • 2000
  • FeS/FeS$_2$ minerals have been known to be potentially useful reductant to the removal of common organic contaminants in groundwater and soil. This research is aimed at improving our understanding of factors affecting the pathways and rates of reductive transformation of Hexachloroethane by catalytical iron minerals in natural system. Hexachloroethane is reduced by FeS/FeS$_2$ minerals under anaerobic condition to tetrachloroethylene and trichloroethylene with pentachloroethyl radical as the intermediate products. The kinetics of reductive transformations of the Hexachloroethane have been investigated in aqueous solution containing FeS, FeS$_2$. The proposed reduction mechanism for the adsorbed nitrobenzene involves the electron donor-acceptor complex as a precursor to electron transfer. The adsorbed Hexachloroethane undergo a series of electron transfer, proton transfer and dehydration to achieve complete reduction. It can be concluded that the reductive transformation reaction takes place at surface of iron-bearing minerals and is dependent on surface area and pH. Nitrobenzene reduction kinetics is affected by reductant type, surface area, pH, the surface site density, and the surface charge. FeS/FeS$_2$-mediated reductive dechlorination may be an important transformation pathway in natural systems.

  • PDF

동전기-생물학적복원기술과 계면활성제를 이용한 phenanthrene 오염토양의 정화

  • 김상준;박지연;이유진;양지원
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.186-190
    • /
    • 2004
  • The electrokinetic bioremediation employing electrolyte circulation method was carried out for the cleanup of phenanthrene-contaminated kaolinite, and microorganism used in the biodegradation of phenanthrene was Sphingomonas sp. 3Y. The electrolyte circulation method supplied ionic nutrientsand the microorganism into soil, and inhibited the significant pH change of soil by increasing the soil buffering capacity by providing phosphate buffer compounds. When the remediation process was conducted without surfactant, the removal efficiency of phenanthrene, at the initial concentration of 200 ppm, was 69% for only 7 days. Higher microbial population and lower phenanthrene concentration were observed in the anode and middle regions of soil specimen than in the cathode region. The higher density of microorganism was because the microbial movement was in the direction of the anode part due to the negative surface charge. When Triton X-100 and APG of 20 g/1 were used to improve the bioavailability of phenanthrene strongly adsorbed onto soil surface, about 90 and 39% of phenanthrene removal were obtained. Consequently, it was confirmed that the microorganism preferred APC to phenanthrene as carbon source and so the removal efficiency with APG decreased less than that without APG.

  • PDF

The Surface Properties of Major Clayminerals Produced in Korea (한국산 우량점토광물(優良粘土鑛物)의 표면특성(表面特性))

  • Choi, Jyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.19 no.3
    • /
    • pp.195-203
    • /
    • 1986
  • This study was conducted to investigate the characteristics of surface charge of major clay minerals in Korea. The charge characteristics of clay minerals were studied by measuring the retention of $NH^+_4$, $Ca^{2+}$ and $Cl^-$ as a function of ionic strength. The dominant clay minerals of Zeolite, Bentonite and Kaolin were oriented as Clinoptilolite+Mordenite, Montmorillonite and Halloysite, respectively. At the same ionic strength, Montmorillonite and Halloysite adsorbed some more $Ca^{2+}$ than $NH^+_4$, whereas Zeolite adsorbed more $NH^+_4$ than $Ca^{2+}$. All the three minerals adsorbed more ions with higher ionic strength and the C.F.C was larger in the order of Halloysite < Montmorillonite < Zeolite. Since the total surface area by EGME rentention was shown to be in the order of Halloysite < Zeolite < Montmorillonite, therefore, the charge density was calculated to be in the order of Montmorillonite < Halloysite < Zeolite.

  • PDF

Andic Properties of Major Soils in Cheju Island II. Electric Charge Characteristics (제주도(濟州島) 대표토양(代表土壤)의 Andic 특성(特性)에 관한 연구 II.전하특성(電荷特性))

  • Song, Kwan-Cheol;Yoo, Sun-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.24 no.4
    • /
    • pp.241-247
    • /
    • 1991
  • Electric charge characteristics of volcanic ash soils in Cheju Island were investigated. For this study, soils of toposequence distributed along the sourthern slope of Mt. Halla, and the major soil groups such as dark brown soils, very dark brown soils, black soils, and brown forest soils were collected and analyzed for extratable acidity, KCl ext. Al, CEC, base saturation, permanent charge and variable charge, etc.. Weolpyeong and Yongheung soils developed on the lower elevations have high $NH_4OAc$ ext. bases, permanent charge and base saturation, and relatively low ext. acidity, CEC and variable charge. For other soils, whose colloidal fractions are dominated by allophane or Al-humus complexes, ext. acidity, CEC, variable charge, and variable charge ratio were very high, and $NH_4OAc$ ext. bases, permanent charge, and base saturation were very low. These trends were especially prominant in the surface. horizons of black soils and brown forest soils dominated by Al-humus complexes. Ext. acidity, CEC($NH_4OAc$), CEC(sum of cations), and variable charge strongly correlated with pyrophosphate ext. carbon. Very dark brown soils and cinder cone soils dominated by allophane showed low KCl ext. Al and relatively high pH, despite their very low base saturation.

  • PDF