• Title/Summary/Keyword: Soil slope stability

Search Result 525, Processing Time 0.02 seconds

Comparison of Infiltration Rate of Slope in Model Test and Finite Element Analysis (모형시험과 유한요소해석에서 비탈면 강우의 침투량 비교)

  • Yu, Yong-Jae;Kim, Jae-Hong
    • Land and Housing Review
    • /
    • v.9 no.2
    • /
    • pp.51-57
    • /
    • 2018
  • The causes of landslides are dependant on rainfall events and the soil characteristics of a slope. For the conventional slope stability, the slope stability analysis has been carried out assuming the saturated soil theory. But, in order to clearly explain a proper soil slope condition by rainfall, the research should be performed using the unsaturated soil mechanism suitable for a soil slope in the field. In the study, by using two major categories of soils in Korea, such as granite and gneiss weathered soils, landslide model test and finite element method have been compared with the difference of seepage and soil stability analysis. The hydraulic conductivity of gneiss weathered soil is slower than that of granite weathered soil, and the gneiss weathered soil contains much finer soils than the granite weathered soil. It was confirmed that the instability of the slope was progressing slowly due to the slow rate of volumetric water content of the surface layer.

A Study on the effect of slope inclination and rainfall in current cut soil slope design criteria (국내 절토 비탈면 설계기준 적용시 사면경사와 강우조건의 영향 연구)

  • La, You-Sung;Kim, Bum-Joo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1264-1270
    • /
    • 2010
  • In this study, the effects of slope inclination and rainfall on weathered soil slope stability were investigated for current cut soil slope design criteria. A series of slope stability analysis was performed on the slopes with the same height (5m), but different inclinations (1:0.8, 1:1, 1:1.2, 1:1.5, 1:2). Seepage analysis was also conducted to examine the rainfall effects directly and compare the combined seepage and slope stability analysis results with the slope stability analysis results for rainy season from the current cut soil slope design criteria. Typical properties for weathered soils were used in both the slope and seepage analysis. The analysis results showed that, for the slopes much steeper than the standard slopes, the factor of safety criteria were satisfied. Therefore, it appears that the slope designs by current cut soil slope design criteria lead to conservative results.

  • PDF

Sensitivity Analyses of Influencing Factors on Stability in Soil Cut Slope (토사 절토사면 안정성 영향인자의 민감도 분석)

  • Yoo, Nam-Jae;Park, Byung-Soo;Jun, Sang-Hyun;Cho, Han-Ki
    • Journal of Industrial Technology
    • /
    • v.26 no.B
    • /
    • pp.73-81
    • /
    • 2006
  • A sensitivity analysis about effects of influencing factors on the stability of Soil cut slope was performed. Slope stability analyses were carried out under dry, rainy and seismic conditions. Dominant factors controlling the slope stability were chosen such as cohesion and internal friction angle, unit weight of soil, water table and seismic horizontal coefficient used for the slope stability during earthquake. Parametric stability analysis with those factors was performed for sensitivity analysis. As results of analyzing the sensitivity of factors under dry and rainy conditions, effects of cohesion, internal friction angle and unit weight of soil on the stability of slope are more critical in the dry condition than in the rainy condition. Cohesion and internal friction angle are more dominant factors influencing the slope stability irrespective of dry or rainy conditions than unit weight of soil and the horizontal seismic coefficient. The unit weight and the horizontal seismic coefficient affects crucially the stability according to conditions of slope formation and dry or rainy seasons. For the effect of horizontal seismic coefficient on stability of slope, safety factor of slope is not affected significantly by dry or rainy conditions. However, increase of the horizontal seismic coefficient under the rainy condition floes reduce the safety factor significantly rather than the dry condition. Therefore, it is needed that the location of the water table is assigned appropriately to satisfy the required safety factor of stability in the case of checking slope stability for the rainy and seismic conditions.

  • PDF

Stability Analysis for a Slope Reinforced with Pressure Grouted Soil Nails (가압식 그라우팅 쏘일네일 보강사면의 거동분석)

  • Kim, Yong-Min;Yun, Yeo-Hyeok;Lee, Sung-June;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.12
    • /
    • pp.39-52
    • /
    • 2011
  • This paper describes a new numerical analysis technique in stability analysis for a slope reinforced with pressure grouted soil nails. The installing effect of pressure grouted soil nails can be simulated in this method. Shear strength reduction method associated with finite element method is used for slope stability analysis. Factors of safety for a slope reinforced with pressure grouted soil nails are compared with those for a natural slope and a slope reinforced with gravity grouted soil nails in order to investigate their reinforcing effects. More than 50% increase in the factor of safety is obtained when the slope is reinforced with pressure grouted soil nails compared to the one with gravity grouted soil nails. The reinforcing effects of pressure grouted soil nails become obvious with increase in their length. The reinforcing mechanism of the pressure grouted soil nails for the slope stability can be explained by the slope failure surface expanding gradually toward the backfill. The increased stability of the slope reinforced with pressure grouted soil nails results mainly from their improved pull-out resistance.

Effect of Mobile Crane Load on Excavated Slope Stability (이동식 크레인 하중이 굴착사면 안정성에 미치는 영향 분석)

  • Kim, Jeong Kon;Na, Ye Ji;Won, Jeong-Hun
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.5
    • /
    • pp.18-26
    • /
    • 2021
  • The effect of heavy construction equipment on the excavated slope is investigated by slope stability analysis. A mobile crane with 500 kN capacity is applied as a working load to the background surface of the excavated slope, in both sandy soil and clay, designed to guarantee the safety of slope stability. Major parameters such as the distance between the edge of the slope and the mobile crane, groundwater level, and ground plate size of the mobile crane are considered. Only 23.8% and 14.3% of the analysis models with sandy soil and clay excavated slope, respectively, satisfied the slope stability. By changing the slope of the sandy soil from 1:1.0 to 1:1.2, the number of analysis models securing slope stability increased from 23.8% to 40.5%. For the clay excavated slope, the analysis models securing slope stability increased from 14.3% to 42.9% by changing slope inclination from 1:0.8 to 1:1.2. In addition, it is found that the increase in the size of the ground plate of the mobile crane increases the analysis models that secure slope stability. Therefore, it is an effective way to relax the excavated slope's inclination angle and simultaneously increase the ground plate size to guarantee stability.

Numerical Analysis on the Behavior of a Colluvium Slope Reinforced with Soil Nails and Anchors (소일네일과 앵커로 보강된 붕적층 비탈면의 거동에 관한 수치해석)

  • Jang, Myoung-Hwan;Kim, Hoon-Tae;Yoo, Nam-Jae
    • Journal of Industrial Technology
    • /
    • v.33 no.A
    • /
    • pp.73-80
    • /
    • 2013
  • This paper is results of numerical analysis on the behavior of colluvium slope with combinations of soil nails and earth anchors during excavation. In order to maintain the stability of the colluvium cut, being composed of gravel and boulder and thus local in stability being expected during slope cut, temporary reinforcing method of soil nailing with shotcrete might be used. Subsequent method of cast-in-place facing with earth anchors can be used to maintain cut slope stable permanently. For the cut slope where these methods had been applied, the numerical techniques were applied to their behaviors and investigate the stability of the slope. Limit equilibrium methods were used to confirm to maintain the slope stability during and after excavation and application of those reinforcing methods. Another numerical technique of FEM was also used to find the stress and strain as well as deformation distribution in reinforcing materials and slope ground during excavation.

  • PDF

Change of Slope Stability due to Slope Inclination and Surface Conditions (사면경사와 표면 조건에 따른 사면안정성 해석)

  • Hwang, Young-Cheol
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.2
    • /
    • pp.5-11
    • /
    • 2015
  • Slope stability is affected by duration of precipitation, probable rainfall intensity, unsaturated soil property, and soil strength. The recent analyses of slope stability tend to include unsaturated analysis based on infiltration properties of soil, while researches of unsaturated soil slope tend to include the analysis of deformation and stress distribution of soil over time. However, infiltration property of unsaturated soil slope depends not only on intensity or duration of precipitation, but also on relief and surface condition, which is not considered in status quo. This research uses hydrologic model parameters of soil in order to consider effects of inclination on filtration, and carries out analysis of unsaturated soil slope to confirm the effects according to slope inclination and surface condition. In conclusion, using slope stability analysis, the need to consider infiltration rate according to inclination and surface condition was confirmed even under the same precipitation conditions.

A Study on the Stability Evaluation of Soil Slope according to inclination of upper Natural Slope (상부자연사면 경사에 따른 토사사면의 안정성 평가에 관한 연구)

  • Lee, Jeong-Yeob;Kim, Jin-Hwan;Lee, Jong-Hyun;Gu, Ho-Bon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.580-585
    • /
    • 2004
  • The purpose of this study is the stability evaluation of soil slope according to inclination of upper natural slope. Upper natural slope breeds loss of slope by inflow in slope of surface water by rainfal1 and f1uctuation of amount of materials in slope through method of cutting slope according to degree of inclination. Basis of standard inclination does not consider of inclination of upper natural slope and is presented uniformly. Therefore, in this study, analyzed stability of inclination of upper natural slope through limit equilibrium analysis. Result is same as following. First, safety factor through limit equilibrium analysis is almost direct decrease when gradient of soil slope is 1:1.2, 1:1.5. However, when gradient of soil slope is 1:1.0, 1:0.7, if sinclination of upper natural slope are $20^{\circ}$, it shows tendency that decrease of safety factor becomes low rapidly. Second, when when gradient of soil slope is fixed, inclination of upper natural slope increase tendency(maximum 3.0 times) that decrease of safety factor.

  • PDF

Unsaturated Soil Mechanics for Slope Stability

  • Rahardjo, Harianto;Satyanaga, Alfrendo;Leong, Eng-Choon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2007.09a
    • /
    • pp.481-501
    • /
    • 2007
  • Excessive rainfalls due to climatic changes can trigger an increase in rainfall-induced slope failures that pose real threats to both lives and properties. Many high slopes in residual soils could stand at a steep angle, but failed during or after rainfall. Commonly, these slopes have a deep groundwater table and negative pore-water pressures in the unsaturated zone above the groundwater table contribute to the shear strength of soil and consequently to factor of safety of the slope. Stability assessment of slope under rainfall requires information on rate of rainwater infiltration in the unsaturated zone and the resulting changes in pore-water pressure and shear strength of soil. This paper describes the application of unsaturated soil mechanics principles and theories in the assessment of rainfall effect on stability of slope through proper characterization of soil properties, measurement of negative pore-water pressures, seepage and slope stability analyses involving unsaturated and saturated soils. Factors controlling the rate of changes in factor of safety during rainfall and a preventive method to minimize infiltration are highlighted in this paper.

  • PDF

Strain-based stability analysis of locally loaded slopes under variable conditions

  • Wang, Jia-Chen;Zhu, Hong-Hu;Shi, Bin;Garg, Ankit
    • Geomechanics and Engineering
    • /
    • v.23 no.3
    • /
    • pp.289-300
    • /
    • 2020
  • With the rapid development of the distributed strain sensing (DSS) technology, the strain becomes an alternative monitoring parameter to analyze slope stability conditions. Previous studies reveal that the horizontal strain measurements can be used to evaluate the deformation pattern and failure mechanism of soil slopes, but they fail to consider various influential factors. Regarding the horizontal strain as a key parameter, this study aims to investigate the stability condition of a locally loaded slope by adopting the variable-controlling method and conducting a strength reduction finite element analysis. The strain distributions and factors of safety in different conditions, such as slope ratio, soil strength parameters and loading locations, are investigated. The results demonstrate that the soil strain distribution is closely related to the slope stability condition. As the slope ratio increases, more tensile strains accumulate in the slope mass under surcharge loading. The cohesion and the friction angle of soil have exponential relationships with the strain parameters. They also display close relationships with the factors of safety. With an increasing distance from the slope edge to the loading position, the transition from slope instability to ultimate bearing capacity failure can be illustrated from the strain perspective.