• 제목/요약/키워드: Soil sampling

검색결과 575건 처리시간 0.017초

SPATIAL AND TEMPORAL INFLUENCES ON SOIL MOISTURE ESTIMATION

  • Kim, Gwang-seob
    • Water Engineering Research
    • /
    • 제3권1호
    • /
    • pp.31-44
    • /
    • 2002
  • The effect of diurnal cycle, intermittent visit of observation satellite, sensor installation, partial coverage of remote sensing, heterogeneity of soil properties and precipitation to the soil moisture estimation error were analyzed to present the global sampling strategy of soil moisture. Three models, the theoretical soil moisture model, WGR model proposed Waymire of at. (1984) to generate rainfall, and Turning Band Method to generate two dimensional soil porosity, active soil depth and loss coefficient field were used to construct sufficient two-dimensional soil moisture data based on different scenarios. The sampling error is dominated by sampling interval and design scheme. The effect of heterogeneity of soil properties and rainfall to sampling error is smaller than that of temporal gap and spatial gap. Selecting a small sampling interval can dramatically reduce the sampling error generated by other factors such as heterogeneity of rainfall, soil properties, topography, and climatic conditions. If the annual mean of coverage portion is about 90%, the effect of partial coverage to sampling error can be disregarded. The water retention capacity of fields is very important in the sampling error. The smaller the water retention capacity of the field (small soil porosity and thin active soil depth), the greater the sampling error. These results indicate that the sampling error is very sensitive to water retention capacity. Block random installation gets more accurate data than random installation of soil moisture gages. The Walnut Gulch soil moisture data show that the diurnal variation of soil moisture causes sampling error between 1 and 4 % in daily estimation.

  • PDF

토양오염도 평가시 시료채취 불확실성 정량화 및 저감방안 (Quantification of Uncertainty Associated with Soil Sampling and Its Reduction Approaches)

  • 김건하
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제18권1호
    • /
    • pp.94-101
    • /
    • 2013
  • It is well known that uncertainty associated with soil sampling is bigger than that with analysis. In this research, uncertainties for soil sampling when assessing TPH and BTEX concentration in soils were quantified based on actual field data. It is almost impossible to assess exact contamination of the site regardless how carefully devised for sampling. Uncertainties associated with sample reduction for further chemical analysis were quantified approximately 10 times larger than those associated with core sampling on site. Bigger uncertainties occur when contamination level is low, sample quantity is small, and soil particle is coarse. To minimize the uncertainties on field, homogenization of soil sample is necessary and its procedures are proposed in this research as well.

SAMPLING ERROR ANALYSIS FOR SOIL MOISTURE ESTIMATION

  • Kim, Gwang-Seob;Yoo, Chul-sang
    • Water Engineering Research
    • /
    • 제1권3호
    • /
    • pp.209-222
    • /
    • 2000
  • A spectral formalism was applied to quantify the sampling errors due to spatial and/or temporal gaps in soil moisture measurements. The lack of temporal measurements of the two-dimensional soil moisture field makes it difficult to compute the spectra directly from observed records. Therefore, the space-time soil moisture spectra derived by stochastic models of rainfall and soil moisture was used in their record. Parameters for both models were tuned with Southern Great Plains Hydrology Experiment(SGP'97) data and the Oklahoma Mesonet data. The structure of soil moisture data is discrete in space and time. A design filter was developed to compute the sampling errors for discrete measurements in space and time. This filter has the advantage in its general form applicable for all kinds of sampling designs. Sampling errors of the soil moisture estimation during the SGP'97 Hydrology Experiment period were estimated. The sampling errors for various sampling designs such as satedlite over pass and point measurement ground probe were estimated under the climate condition between June and August 1997 and soil properties of the SGP'97 experimental area. The ground truth design was evaluated to 25km and 50km spatial gap and the temporal gap from zero to 5 days.

  • PDF

Soil-Gas의 분석을 이용한 휘발성 유기화합물 오염도 신속측정 (Rapid Measurement of VOC Using an Analysis of Soil-Gas)

  • 김희경;조성용;황경엽
    • 한국토양환경학회지
    • /
    • 제3권1호
    • /
    • pp.3-9
    • /
    • 1998
  • 본 연구는 휘발성 유기 화합물로 오염된 가솔린 지역에서 soil-gas의 분석결과로부터 오염도를 유추하는 기법에 대하여 서술 하였다. Soil-gas의 채취방법으로는 펌프를 이용한 1)grab sampling법과 흡착제 trap을 사용한 2)passive sampling법이 있다. Grab sampling법은 특정시간에 특정장소에서의 오염도를 보여주며, 반면에 passive sampling법은 특정위치에서 시간에 따른 오염도의 변화를 보여 준다. Soil-gas의 분석은 1)PID나 FID와 같은 작은 검지기에 의해서 총괄 탄화수소량을 측정할수도 있고 2)기체농도에 따라서 색깔이 변하는 지시약이 채워진 기체검지기 튜브를 사용할수도 있으며 3)여러가지 화합물을 한 번에 분석할수 있는 이동형 GC를 사용할수도 있다. Soil-gas를 이용한 측정법은 매우 값싸며 세밀한 정밀조사를 하기 위한 전단계에서 사용할 수 있는 유용한 방법으로 추천할만하다 하겠다.

  • PDF

Gy의 입자성 물질 시료채취이론에 근거한 토양 시료 채취량 결정 (Determination of Soil Sample Size Based on Gy's Particulate Sampling Theory)

  • 배범한
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제16권6호
    • /
    • pp.1-9
    • /
    • 2011
  • A bibliographical review of Gy sampling theory for particulate materials was conducted to provide readers with useful means to reduce errors in soil contamination investigation. According to the Gy theory, the errors caused by the heterogeneous nature of soil include; the fundamental error (FE) caused by physical and chemical constitutional heterogeneity, the grouping and segregation error (GE) aroused from gravitational force, long-range heterogeneous fluctuation error ($CE_2$), the periodic heterogeneity fluctuation error ($CE_3$), and the materialization error (ME) generated during physical process of sample treatment. However, the accurate estimation of $CE_2$ and $CE_3$ cannot be estimated easily and only increasing sampling locations can reduce the magnitude of the errors. In addition, incremental sampling is the only method to reduce GE while grab sampling should be avoided as it introduces uncertainty and errors to the sampling process. Correct preparation and operation of sampling tools are important factors in reducing the incremental delimitation error (DE) and extraction error (EE) which are resulted from physical processes in the sampling. Therefore, Gy sampling theory can be used efficiently in planning a strategy for soil investigations of non-volatile and non-reactive samples.

An analytical investigation of soil disturbance due to sampling penetration

  • Diao, Hongguo;Wu, Yuedong;Liu, Jian;Luo, Ruping
    • Geomechanics and Engineering
    • /
    • 제9권6호
    • /
    • pp.743-755
    • /
    • 2015
  • It is well known that the quality of sample significantly determines the accuracy of soil parameters for laboratory testing. Although sampling disturbance has been studied over the last few decades, the theoretical investigation of soil disturbance due to sampling penetration has been rarely reported. In this paper, an analytical solution for estimating the soil disturbance due to sampling penetration was presented using cavity expansion method. Analytical results in several cases reveal that the soil at different location along the sample centerline experiences distinct phases of strain during the process of sampling penetration. The magnitude of induced strain is dependent on the position of the soil element within the sampler and the sampler geometry expressed as diameter-thickness ratio D/t and length-diameter ratio L/D. Effects of sampler features on soil disturbance were also studied. It is found that the induced maximum strain decreases exponentially with increasing diameter-thickness ratio, indicating that the sampling disturbance will reduce with increasing diameter or decreasing wall thickness of sampler. It is also found that a large length-diameter ratio does not necessarily reduce the disturbance. An optimal length-diameter ratio is suggested for the further design of improved sampler in this study.

Sampling Study on Environmental Observations: Precipitation, Soil Moisture and Land Cover Information

  • 유철상
    • 한국환경과학회지
    • /
    • 제5권2호
    • /
    • pp.103-112
    • /
    • 1996
  • Observational date is integral in our understanding of present climate, its natural variability and any cnange roue to anturopogenic effects. This study incorporates a brief overview of sampling requirements using data from the first ISLSCP Field Experiment (FIFE) in 1987, which was a multi-disciplinary field experiment over a 15km grid in Konza Prairie, USA. Sampling strategies were designed for precipitation and soil moisture measurements and also detecting land cover type. It was concludes that up to 8 raingages would be needed for valuable precipitation measurements covering the whole FIFE catchment, but only one soil moisture station. Results show that as new gages or station are added to the catchment then the sampling error is reduced, but the Improvement in error performance is less as the number of gages or stations increases. Sampling from remoteiy sensed instruments shows different results. It can be seen that the sampling error at 1arger resolution sizes are small due to competing error contribution from both commission and omission error.

  • PDF

토양용액 채취를 위한 토성별 한계수분함량 설정 (Determination of moisture threshold for solution sampling in different soil texture)

  • 이창훈;김명숙;공명석;김유학;오택근;강성수
    • 농업과학연구
    • /
    • 제41권4호
    • /
    • pp.399-404
    • /
    • 2014
  • Soil moisture is an important factor for the availability and circulation of nutrients in arable soil. The purpose of this study was to set thresholds moisture content on soil nitrate concentration in the solution for real-time diagnosis. Sandy loam, silt loam, and sandy loam was filled with $1.2g\;cm^{-3}$ at Wagner pots, 0, 100, and $200mg\;L^{-1}$ of $KNO_3$ was saturated. Nitrate in standard solution was recovered about 95% by passing the porous cup. Nitrate concentrations in sampling of soil solution were examined by using a porous cup. The soil solution was higher in accordance with sandy loam> silt loam> clay loam, limited water filled pore space for sampling soil solution was 33.7, 56.4, and 62.2%, respectively. Nitrate concentration in the soil solution was negligible at sandy loam and silt loam during sampling periods, which was decreased about 50~82% in clay loam compared to the initial $NO_3$-N concentration in the saturated $KNO_3$ solution. Over limitation of soil solution sampling, soil EC and $NO_3$-N content were increased with the saturated $NO_3$-N concentration, regardless of soil texture (p<0.05). Conclusively, soil solution by using a porous cup was possible, regardless of the soil texture, which was useful for the diagnosis in nitrate concentration of soil solution. However, because nitrate concentration of soil solution in a clay loam changes, it was necessary for careful attention in order to take advantage for the real-time diagnosis of nitrogen management in soil.

점봉산 천연보호림의 토양과 낙엽에서의 토양미소절지동물상 (Soil Microarthropod Fauna at Mt. Jumbong, Nature Researve Area)

  • 강방훈;이준호
    • The Korean Journal of Ecology
    • /
    • 제20권5호
    • /
    • pp.329-337
    • /
    • 1997
  • Study of population density and biomass of soil microarthropods in soil, herbaceous leaf litter and wood leaf litter was conducted at 4 sites with different flora in Mt. Jumbong, a nature reserve area, in Korea from Aug. 1994 to May 1996. Total 47, 849 individuals of soil microarthropods in soil were collected and identified into 6 different classes, and 16 orders. The composition, densities, and dominant group of soil microarthropods were different among 4 sampling sites. Collembola was the most abundant group with 50.7% at South-facing slope and 50.6% at the North-facing slope. But Acari was the most abundant group with 49.8% at Altitude 900m site and 47.7% at Altitude 1100m site. Two group ranged 87-95% of total individuals. A/C ratio was less than 1.0 at 4 sampling sites during the all sampling seasons. As a result of biomass evaluation, rato of Acari was decreased but ratio of Diplopoda, coleoptera, Araneae, Diptera and Chilopoda was increased. About 70% of total orders and densities were found in less than 5cm soil depth. The composition, densities, and dominant group of soil microarthropods were different among soil, herbaceous litter and wood litter. Collembola was the most abundant group in herbaceous and wood litter. A/C ratio was less than 1.0 in litter during the sampling seasons. As a result of biomass evaluation in litter, ration of Araneae and Collembola was very high, but ratio of Acari was low.

  • PDF

Estimation of the Number of Sampling Points Required for the Determination of Soil CO2 Efflux in Two Types of Plantation in a Temperate Region

  • Lee, Na-Yeon(Mi-Sun);Koizumi, Hiroshi
    • Journal of Ecology and Environment
    • /
    • 제32권2호
    • /
    • pp.67-73
    • /
    • 2009
  • Soil $CO_2$ efflux can vary markedly in magnitude over both time and space, and understanding this variation is crucial for the correct measurement of $CO_2$ efflux in ecological studies. Although considerable research has quantified temporal variability in this flux, comparatively little effort has focused on its spatial variability. To account for spatial heterogeneity, we must be able to determine the number of sampling points required to adequately estimate soil $CO_2$ efflux in a target ecosystem. In this paper, we report the results of a study of the number of sampling points required for estimating soil $CO_2$ efflux using a closed-dynamic chamber in young and old Japanese cedar plantations in central Japan. The spatial heterogeneity in soil $CO_2$ efflux was significantly higher in the mature plantation than in the young stand. In the young plantation, 95% of samples of 9 randomly-chosen flux measurements from a population of 16 measurements made using 72-$cm^2$ chambers produced flux estimates within 20% of the full-population mean. In the mature plantation, 20 sampling points are required to achieve means within $\pm$ 20% of the full-population mean (15 measurements) for 95% of the sample dates. Variation in soil temperature and moisture could not explain the observed spatial variation in soil $CO_2$ efflux, even though both parameters are a good predictor of temporal variation in $CO_2$ efflux. Our results and those of previous studies suggest that, on average, approximately 46 sampling points are required to estimate the mean and variance of soil $CO_2$ flux in temperate and boreal forests to a precision of $\pm$ 10% at the 95% confidence level, and 12 points are required to achieve a precision of $\pm$ 20%.