• Title/Summary/Keyword: Soil reuse

Search Result 111, Processing Time 0.021 seconds

Study on Reuse and Recycling of Soil Washing Wastewater (오염토양 제염폐수 재사용 및 재생 연구)

  • 김계남;정기정;이동규
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.226-229
    • /
    • 2001
  • For volume reduction of the wastewater generated on washing the soil contaminated with cobalt, recycling and reuse experiments of the wastewater were executed. Also. the soil remediation efficiency by repetitive washing with fresh citric acid was analyzed. The soil around TRIGA was sampled for the experiment. Results of recycling experiment by replacement-precipitation method were as follows. The remediation efficiency of 1st recycling wastewater was 97% and that of 2nd recycling wastewater was 94%. Also, To obtain remediation efficiency over than 90%, the 5th repetitive washing with fresh citric acid was needed.

  • PDF

Process Evaluation of Soil Washing Including Surfactant Recovery by Mathematical Simulation (계면활성제 재사용을 포함한 토양 세척 공정의 전산모사 평가)

  • Ahn, Chi-Kyu;Woo, Seung-Han;Park, Jong-Moon
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.1
    • /
    • pp.32-42
    • /
    • 2008
  • A surfactant recovery and reuse process by selective adsorption with activated carbon was proposed to reduce surfactant cost in a soil washing process. Mathematical model simulation was performed for the whole process, which consists of soil washing, soil recovery, and soil re-washing. The optimal range of surfactant dosage was $6{\sim}10$-fold critical micelle concentration in soil. The efficiency of surfactant reuse process was decreased with increasing the dosage of activated carbon. Effectiveness factor for activated carbon significantly altered the efficiency of the reuse process unlike effectiveness factor for soil. Total requirement of surfactant was reduced to 20-30% with the reuse process compared to the conventional soil washing process. The contamination of wastewater after soil washing was reduced with the reuse process. This mathematical model can be used to estimate performance of the whole process of soil washing including surfactant recovery and to obtain optimal ranges of operating conditions without extra labor-intensive experimental works.

Effects of Indirect Wastewater Reuse on Water Quality and Soil Environment in Paddy Fields (간접하수재이용에 따른 논에서의 수질 및 토양환경 영향 분석)

  • Jeong, Han Seok;Park, Ji Hoon;Seong, Choung Hyun;Jang, Tae Il;Kang, Moon Seong;Park, Seung Woo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.3
    • /
    • pp.91-104
    • /
    • 2013
  • The objectives of this study were to monitor and assess the environmental impacts of indirect wastewater reuse on water quality and soil in paddy fields. Yongin monitoring site (YI) irrigated from agricultural reservoir and Osan monitoring site (OS) irrigated with treated wastewater diluted with stream water were selected as control and treatment, respectively. Monitoring results for irrigation water quality showed a significant statistical difference in salinity, exchangeable cation and nutrients. Pond water quality showed a similar tendency with irrigation water except for the decreased difference in nutrients due to the fertilization impact. Soil chemical properties mainly influenced by fertilization activity such as T-N, T-P, and $P_2O_5$ were changed similarly in soil profiles of both monitoring sites, while the properties, EC, Ca, Mg, and Na, mainly effected by irrigation water quality showed a considerable change with time and soil depth in treatment plots. Heavy metal contents in paddy soil of both control and treatment did not exceed the soil contamination warning standards. This study could contribute to suggest the irrigation water quality standards and proper agricultural practices including fertilization for indirect wastewater reuse, although long-term monitoring is needed to get more scientific results.

Changes of Soil Properties through the Remediation Processes and Techniques for the Restoration of Remediated Soils (오염 토양 정화공정에 의한 토양의 특성 변화 및 정화토의 회복기술)

  • Lee, Sang-Woo;Lee, Woo-Chun;Lee, Sang-Hun;Kim, Soon-Oh
    • Economic and Environmental Geology
    • /
    • v.53 no.4
    • /
    • pp.441-477
    • /
    • 2020
  • There have been raised other environmental issues related to remediated soils piled up in numerous carry-out processing facilities because a considerable quantity of them have been produced every year, but most of them have not been relevantly reused or recycled. Thus, this article reports the trend of researches on the development of techniques to restore the quality of remediated soils to activate their reuse and recycling. Firstly, the tendency of change in soil properties through remediation processes was looked over, and then the degradation of soil quality was characterized according to the type of remediation processes. Besides, the direction of policy to promote the reuse and recycling of remediated soils was introduced, and finally, the future works needed were suggested. This article was prepared based on the results of the survey of domestic and foreign literature. A number of literature were reviewed to scrutinize the change of soil properties due to remediation processes and diverse techniques for the amendment and restoration of remediated soils. Furthermore, the policies related to the reuse and recycling of remediated soils were arranged with the reference of the first and second versions of the Soil Conservation Master Plan of Korea. The literature survey focused on three kinds of remediation technologies, such as land farming, soil washing, and thermal desorption, which were most frequently used so far in Korea. The results indicate that the tendency of change in soil properties was significantly different depending on the type of remediation processes applied, and the degradation characteristics of soil quality were also totally different between them. The soil amendment and restoration can be categorized as three techniques depending on the type of substances used, such as inorganic, organic, and biological ones. Diverse individual materials have been used, and the soil properties improved or enhanced were dependent on the type of specific materials utilized. However, few studies on the restoration of soil qualities degraded during the remediation processes have not been carried out so far. The second Soil Conservation Master Plan states the quality certification and target management system of remediated soils, and it is expected that their reuse and recycling will be facilitated hereafter. With the consideration of the type of remediation processes implemented and public utility, the restoration technologies of remediated soils should be developed for the vitalization of their reuse and recycling. Besides, practical and specific measures should be taken to support the policy specified in the second Soil Conservation Master Plan and to promote reuse/recycling of remediated soils.

Rice Cultivation with Reclaimed Wastewater Irrigation for Wastewater Reuse (하수처리수의 재이용을 위한 벼 재배시험)

  • Kang, Moon-Seong;Park, Seung-Woo;Kim, Sang-Min;Seong, Chung-Hyun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.1
    • /
    • pp.75-86
    • /
    • 2004
  • The objective of the research is to develop agricultural resue technologies of reclaiming the effluents from a municipal wastewater treatment plant and reusing for irrigated rice paddies. The Suwon wastewater treatment plant was selected for wastewater reuse tests. The control was the plots with groundwater irrigation (TR#1), the treatment (TR#2) using polluted stream water as it was, and three others using wastewater after treatment. Three levels of wastewater treatments were employed: the effluent from the wastewater treatment plant (TR#3), sand filtering after treatment plant(TR#4), and ultra-violet treatment after sand filtering (TR#5). The randomized block method was applied to wastewater application to paddy rice with five treatments and six replica. The effects of various wastewater treatment levels on water quality, paddy soil, crop growth, yields, and the health hazards were investigated. The primary results indicate that cultivating rice with reclaimed wastewater irrigation did not cause a problem to adverse effects on crop growth and yields. Overall, wastewater could be used as a practical alternative measure for reclaimed wastewater irrigation. However, long-term monitoring is recommended on the effects on soil chemical characteristics and its related health concerns.

Changes in the Physicochemical Properties of Soil According to Soil Remediation Methods (토양 정화 방법에 따른 토양의 물리화학적 특성 변화)

  • Yi, Yong-Min;Oh, Cham-Teut;Kim, Guk-Jin;Lee, Chul-Hyo;Sung, Ki-June
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.4
    • /
    • pp.36-43
    • /
    • 2012
  • Various methods are used to remediate soil contaminated with heavy metals or petroleum. In recent years, harsh physical and chemical remediation methods are being used to increase remediation efficiency, however, such processes could affect soil properties and degrade the ecological functions of the soil. Effects of soil washing, thermal desorption, and land farming, which are the most frequently used remediation methods, on the physicochemical properties of remediated soil were investigated in this study. For soils smaller than 2 mm, the soil texture were changed from sandy clay loam to sandy loam because of the decrease in the clay content after soil washing, and from loamy sand to sandy loam because of the decrease in the sand content and increase in silt content during thermal desorption, however, the soil texture remained unchanged after land farming process. The water-holding capacity, organic matter content, and total nitrogen concentration of the tested soil decreased after soil washing. A change in soil color and an increase in the available phosphate concentration were observed after thermal desorption. Exchangeable cations, total nitrogen, and available phosphate concentration were found to decrease after land farming; these components were probably used by microorganisms during as well as after the land farming process because microbial processes remain active even after land farming. A study of these changes can provide information useful for the reuse of remediated soil. However, it is insufficient to assess only soil physicochemical properties from the viewpoint of the reuse of remediated soil. Potential risks and ecological functions of remediated soil should also be considered to realize sustainable soil use.

Environmental Effects Analysis by the Fertilizer Change with Wastewater Reuse in Paddy Fields (하수처리수의 농업용수 재이용시 시비량 변화에 따른 환경영향 분석)

  • Jang, Tea-Il;Park, Seung-Woo;Cho, Jae-Young
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.643-648
    • /
    • 2005
  • The objective of this paper is to analyze the environmental effects by the fertilizer change with wastewater reuse for agriculture. For this research, Lysimeter tests are being implemented to cultivate rice with different levels of fertilizer applications with wastewater irrigation., and to analyze the nutrient loading by wastwater reuse in paddy fields was examined the CREAMS-PADDY model. CREAMS-PADDY model is modified from CREAMS model for considering the hydrologic cycles in paddy field. As a result, in the lysimeter treated by irrigation with wastewater and chemical fertilizer with half of the conventional amount showed generally similar tendency to the control plot. This may require the modifications of standard cultural practices for rice in terms of fertilizer and pesticide applications. However, high concentration of sodium in wastewater might cause damage to physico-chemical properties of paddy soil. And the wastewater reuse effects on nutrient loads were quantitatively analyzed and this results provide the reasonable management for agricultural reuse.

  • PDF

Development of Elemental Technology for the Revitalization of Heavy Metal Contaminated Soil Remediated by Soil Washing (중금속 오염 토양의 토양세척 정화 후 토양 건강성 회복을 위한 요소 기술 개발)

  • Seung-Hyun Lee;Jong-Hwan Lee;Woo-Chun Lee;Sang-Woo Lee;Soon-Oh Kim
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.5
    • /
    • pp.36-50
    • /
    • 2023
  • Soil health can deteriorate through both contamination and remediation. Accordingly, revitalization processes are needed to reuse or recycle the remediated soil. The study was conducted to assess the changes in soil health parameters of heavy metals-contaminated soil during soil washing process. In addition, unit processes were proposed to improve the quality of the remediated soil relevant to its reclamation purposes, such as agricultural and forest lands. A total of 21 indicators were used to determine whether the soil health was degraded or recovered. The performance of 6 amendments in improving soil health was quantitatively evaluated according to their dosage and application duration. Finally, the experimental results were assessed by simple regression analyses to determine the statistical significance and relative performance of each amendment. The results indicated that 18 health indicators out of 21 deteriorated through the soil washing process. Based on the results, it is recommended that several effective amendments be complementarily combined and applied in real applications because use of single amendment does not likely improve the quality of remediated soils.