• Title/Summary/Keyword: Soil reclamation

Search Result 401, Processing Time 0.022 seconds

Effects of Soil Neutralizing Treatments on Soil Characteristics and Growth of Aster koraiensis in the Acid Soil of Abandoned Metal Mine

  • Jung, Mun Ho;Lee, Sang Hwan;Kim, Yoon Su;Park, Mi Jeong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.3
    • /
    • pp.287-292
    • /
    • 2016
  • The objectives of this study were to investigate the effects of soil neutralizing treatments on soil characteristics and growth of Aster koraiensis in the acid soil of abandoned metal mine for selection of proper neutralizer. The most effective neutralizers were acid mine drainage sludge, waste lime + oyster and compost. Those neutralizing treatments showed promoting growth of Aster koraiensis. According to this study, it is applicable of acid mine drainage sludge, waste lime + oyster and compost to neutralize acid soil for rehabilitation in abandoned metal mine. However, follow-up study is necessary to calculate proper ratio of each neutralizer.

Study for Phytostabilization using Soil Amendment and Aster koraiensis Nakai in Heavy Metal Contaminated Soil of Abandoned Metal Mine

  • Jung, Mun-Ho;Lee, Sang-Hwan;Ji, Won-Hyun;Park, Mi-Jeong;Jung, Kang-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.627-634
    • /
    • 2016
  • The objectives of this study were to select optimal soil amendments through analysis of heavy metal availability in soil and uptake to Aster koraiensis Nakai for forest rehabilitation of heavy metal contaminated soil of abandoned metal mine. A. koraiensis was cultivated for 6 months at contaminated soil with several soil treatments (bottom ash 1 and 2%, fly ash 1 and 2%, waste lime+oyster 1 and 2%, Acid mine drainage sludge (AMDS) 10 and 20%, compost 3.4%, non-contaminated natural forest soil, and control). The analysis results of heavy metal concentrations in the soil by Mehlich-3 mehthod, growth and heavy metal concentrations of A. koraiensis showed that waste oyster+lime 1% and compost were more effective than the other amendments for phytostabilization. However, it is needed comprehensive review of factors such as on-site condition, slope covering to reduce soil erosion and vegetation introduction from surround forest for revegetation to apply forest rehabilitation.

Characteristics of Soil Chemical Properties in Abandoned Coal Mine Forest Rehabilitation Areas in Mungyeong, Gyeongsangbuk-do (경상북도 문경시 폐탄광 산림복구지 토양의 화학적 특성)

  • Jung, Mun Ho;Shim, Yon Sik;Kim, Tae Heok;Oh, Ji Young;Jung, Yeong Sang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.733-737
    • /
    • 2012
  • The objectives of this study were to investigate soil chemical properties for forest rehabilitation and suggest design and management in abandoned coal mine areas in Mungyeong, Gyeongsangbuk-do. Total study sites were 10 sites, and soil analysis particular were soil pH, TOC, total-N, C/N ratio, A.v. $P_2O_5$, and CEC. Because most of study sites showed soil pH from 5.0 to 7.0, it seems that soil pH does not affect growth of vegetation. But soil pH in Danbong1 was acidic (pH 4.6), so it is needed to improve with ameliorant such as limestone. Most of study sites is necessary to manage for organic matter and Nitrogen, because there sites showed lower value of TOC and total-N than general forest. The values of A.v. $P_2O_5$ and CEC were good in most of study sites, so it seems that they do not have effect on vegetation growth. All of soil factors has no regression according to elapsed time after rehabilitation. TOC, total-N and A.v. $P_2O_5$ among soil properties have positive relationship between each other. It is necessary to fertilizer for organic matter and Nitroge because of value in TOC, total-N and C/N ratio. The results of this study were analyzed only one time. So, long-term monitoring for soil properties is important for the correct forest rehabilitation and management.

Effect of Soil Factors on Crop Uptake of Toxic Trace Elements (독성미량원소의 작물흡수에 대한 토양인자의 영향)

  • Park, Mi Jeong;Ji, WonHyun;Koh, IlHa;Lee, Sang-Hwan
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.5
    • /
    • pp.37-44
    • /
    • 2018
  • Soil trace elements and their bioaccumulation in agricultural products have attracted widespread concerns, yet the crop uptake characteristics of trace elements in different soil-plants systems have been rarely investigated. Experiments were carried out to investigate the effect of soil properties on trace element concentrations in cabbage and radish. Soil pH and total organic matter were major factors influencing trace elements transfer from soil to vegetables. Inclusion of other soil properties in the stepwise regression analysis improved the regression models for predicting trace element concentrations. Consideration of other soil properties should be taken into account for more precise prediction of trace element concentrations in the two vegetables, which could help quantitatively evaluate the ecologic risk of toxic trace elements accumulation in crops.

Transfer of Arsenic from Paddy Soils to Rice Plant under Different Cover Soil Thickness in Soil Amendments in Abandoned Coal Mine (폐탄광지역 비소오염 농경지(논) 개량 시 복토두께에 따른 비소의 벼 전이 및 토양용액 특성)

  • Koh, Il-Ha;Kwon, Yo Seb;Jeong, Mun-Ho;Ko, Ju In;Bak, Gwan-In;Ji, Won Hyun
    • Economic and Environmental Geology
    • /
    • v.54 no.4
    • /
    • pp.483-494
    • /
    • 2021
  • This study was carried out to investigate the feasibility of reducing clean cover soil using a flooded column test in arsenic-contaminated farmland reclamation of abandoned coal mine area that shows generally low or about worrisome level (25 mg/kg) of Korea soil environment conservation act unlike abandoned metal mine. During the monitoring period of soil solution for 4 months, chemical properties (pH, EC, ORP, Fe, Mn, Ca, and As) in each layer (clean soil cover and contaminated/stabilized soil) showed different variation. This result revealed that soil solution in stabilized or contaminated soil rarely affected that in cover soil. Whether stabilized or not, arsenic concentrations in the rice roots grown in the soil covers with the thickness of 40 cm decreased by 98% in compared with the that grown in the control soil. In case of the soil covers with 20 cm thickness on stabilized soil, it decreased by 80% and this was 22 percentage point higher than when the soil of lower layer was not stabilized. Thus, reducing clean cover soil could be possible in contaminated farmland soil reclamation if appropriate stabilization of contaminated soil is carried.

A Study on Heavy Metal Pollution in Mongolia Boroo Soil (몽골 버러지역 토양의 중금속 오염 현황 조사)

  • Park, Juhyun;Park, Jayhyun;Kim, Takhyun;Yeon, Gyuhun
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.5
    • /
    • pp.17-25
    • /
    • 2018
  • The Boroo area in Mongolia is known to have been contaminated with heavy metals due to irregular gold mining activities and the release of mercury from gold extraction process. Soil and mine tailings were collected to analyze contamination patterns of heavy metals in the Boroo area. Analyses revealed that mercury, arsenic and cadmium concentrations exceeded the regulatory standard of the nation (Mongolia National Standard). In case of mercury, about 80% of the survey area was over the limit and the concentration distribution heavily influenced by influx of mercury through water transport. Soil contamination by arsenic was most severe that the concentration exceeded the regulatory limit in almost entire survey area, showing peak concentrations at nearby streams and river along with ore processing facilities. For cadmium, about 20% of the survey area was over the limit with the concentration distribution similar to that of arsenic.

Changes of some chemical constituents in different soil depth with textures of Fluvio-marine soil under assessment of reclamation duration (간척년수(干拓年數)에 따른 토성(土性) 및 작토층위별(作土層位別) 수종(數種) 화학성분변화(化學成分變化) 차이(差異)에 관(關)한 연구(硏究))

  • Kim, Seong Chae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.1
    • /
    • pp.23-28
    • /
    • 1987
  • A series of field and laboratory experiments were conducted to find out the changes of some soil chemical constituents in different soil depth with three different soil textures as Bongnam-clayey, Gwanghwal-silty loam and Mangyeong fine sandy soil on the assessment of reclamation duration in Fluvio-marine soil. The result obtained were summarized as follows; 1. Exchangeable potassium, calcium, magnessium, sodium with manganes, silica and cation exchange capacity were remarkably decreased with assessment of reclamation duration. Decreasing tendency was pronounced more in sandy soil than silty loam or clayly soil. 2. Soil organic matter content in top soil was increased with increasing of reclamation years. From reclamation time, about 30 years in clayly and about 80 years in silty loam and sandy soil were necessary for the maintanance of averaged organic matter content to 2.5%. 3. Potassium activity ratio ($K/{\sqrt{Ca+Mg+Na}}$) was differed with soil depth, soil texture and assessment of reclamation duration. About 50 years is may be necessary for the maintanance of potassium activities ratio in ordinary paddy soil of 0.05-0.2. 4. Percent of adsorbed sodium (PAS), ratio of adsorbed sodium (RAS) and ratio of sodium adsorbtion(RSA) were remarkably decreased with assessment of reclamation duration. Specially, decreasing tendency was pronounced more in sandy soil than silty loam and clayly soil 5. Amount of clay content in subsoil was appearently decreased during 30 years of reclamation, but clay contents in top soil was appearently decreased 50 years after reclamation.

  • PDF

Reduction of Soil Loss from Sloped Agricultural Field by using Hydrated Lime (소석회를 이용한 급경사 농경지 토양유실 저감)

  • Koh, Il-Ha;Yu, Chan;Park, Mi Jeong;Ji, Won Hyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.24 no.2
    • /
    • pp.1-7
    • /
    • 2019
  • The feasibility of using hydrated lime ($Ca(OH)_2$) was assessed in reducing soil loss in sloped land under field condition. During 6-month monitoring from May to October, amendment of hydrated lime (3%, w/w) to a test plot decreased soil loss by 76% as compared to the unamended plot. However, the growth of natural vegetation was hampered by hydrated lime addition due to pH increase. Hydrated lime can be used as an effective agent to prevent soil loss in sloped land, but additional treatments are needed to preserve vegetation growth, especially in crop fields.

Dredging Material Application Lightweight Foamed Soil Full Scale Test Bed Verification (준설토 활용 경량기포혼합토 실규모 현장 실증 연구)

  • Kim, Dong-Chule;Yea, Gue-Guwen;Kim, Hong-Yeon;Kim, Sun-Bin;Choi, Han-Lim
    • Journal of Coastal Disaster Prevention
    • /
    • v.5 no.4
    • /
    • pp.163-172
    • /
    • 2018
  • To propose the design technique and the execution manual of the LWFS(Lightweight Foamed Soil) method using dredged soil, the operation system for the test-bed integrated management, and to establish an amendment for the domestic quantity per unit and specifications, and a strategy for its internationalization. In order to utilize the dredged soil from the coastal area as a construction material, we constructed the embankment with LWFS on soft ground and monitored its behavior. As a result, it can be expected that the use of LWFS as an embankment material on the soft ground can improve the economic efficiency by reducing the depth and period of soil improvement as well as the uses of nearby dredged soil. To verify the utilization of the dredged soil as a material for light-weighted roadbed, soft ground and foundation ground, and surface processing, perform an experimental construction for practical structures and analyze the behavior. It is expected to be able to improve the soft ground with dredged soil and develop technique codes and manuals of the dredged soil reclamation by constructing a test-bed in the same size of the fields, and establish the criteria and manual of effective dredged soil reclamation for practical use. The application technology of the dredged soil reclamation during harbor constructions and dredged soil reclamation constructions can be reflected during the working design stage. By using the materials immediately that occur from the reclamation during harbor and background land developments, the development time will decrease and an increase of economic feasibility will happen. It is expected to be able to apply the improved soil at dredged soil reclamation, harbor and shore protection construction, dredged soil purification projects etc. Future-work for develop the design criteria and guideline for the technology of field application of dredged soil reclamation is that review the proposed test-bed sites, consult with the institutions relevant with the test-bed, establish the space planning of the test-bed, licensing from the institutions relevant with the test-bed, select a test-bed for the dredged soil disposal area.

Characteristics of Soil Chemical Properties in Abandoned Coal Mine Forest Rehabilitation Areas in Hwasun, South Jeolla Province (전라남도 화순군 폐탄광 산림복구지 토양의 화학적 특성)

  • Jung, Mun-Ho;Shim, Yon-Sik;Kim, Tae-Heok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1010-1015
    • /
    • 2011
  • The objectives of this study were to investigate soil chemical characteristics for forest rehabilitation and suggest management in abandoned coal mine areas in Hwasun-gun, South Jeolla Province. Total study sites were 8 sites, and soil analysis particular were soil pH, TOC, total-N, C/N ratio, Avail. $P_2O_5$, and CEC. Average soil pH was 5.8 (4.7~6.4). Average contents of TOC, total-N and C/N ratio were 1.1% (0.2~2.0%), 0.08% (0.02~0.13%) and 15.0 (7.9~31.4), respectively. Average Avail. $P_2O_5$ was $8.3mg\;kg^{-1}$ (2.7~15.0) and Average CEC was $13.7cmol_c\;kg^{-1}$ ($9.9{\sim}18.5cmol_c\;kg^{-1}$). Soil pH was decreased according to elapsed time from forest rehabilitation, while TOC, total N and CEC were increased. Av. $P_2O_5$ did not show any relationship with elapsed time. Soil pH was stable comparing with general forest soil in South Jeolla Province (5.1), while contents of TOC and total N were lower than general forest soil in South Jeolla Province (4.9% and 0.18%, respectively). Therefore, sustainable managements such as fertilization for TOC and total N are necessary for good rooting and growth of vegetation.