• Title/Summary/Keyword: Soil reaction

Search Result 834, Processing Time 0.03 seconds

Nonlinear Subgrade Reaction Analysis of the Soil-Pile System for Mooring Dolphin Structures (계류식 돌핀구조물에 대한 지반-말뚝계의 비선형 지반반력 해석)

  • 오세붕;이진학;이상순;김동수;정태영
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.2
    • /
    • pp.3-16
    • /
    • 1999
  • The objective of BMP( Barge Mounted Plant) project is to construct plants on mooring floating structures at sea. To analyze the pile behavior under mooring dolphins, generally, axial or lateral behavior of soil-pile system is evaluated by using a nonlinear subgrade reaction method which models the pile as a structural element and the soil as series of nonlinear springs along the depth. As a result, load-displacement curves at pile head can be solved by finite difference method and the equivalent stiffness of bottom boundaries of dolphin structure is evaluated. In this study off-shore site investigation was performed on the marine area of Koje Island and axial and lateral load transfer curves of the ground were modeled with depth. The subgrade reaction analysis was performed for piles under axial or lateral loadings, and the required penetration depth and section of the pile were determined. Subsequently, the spring boundaries under the dolphin structure could be modeled from the calculated load-displacement curve and then the dynamic response of the dolphin structure was analyzed reasonably by considering ground conditions. The analysis considering the stiffness of the soil-pile system has resulted in larger displacement amplitudes than those for rigid foundations. Furthermore, moment distributions of the casing were dependent on the soil-pile system so that deformable foundation induces the larger moment of top section of casing and the smaller moment of pile head.

  • PDF

Evaluation of the Response of BRM Analysis with Spring-Damper Absorbing Boundary Condition according to Modeling Extent of FE Region for the Nonlinear SSI Analysis (비선형 SSI 해석을 위해 Spring-Damper 에너지 흡수경계조건을 적용한 BRM의 유한요소 모델링 범위에 따른 응답평가)

  • Lee, Eun-Haeng;Kim, Jae-Min;Jung, Du-Ri;Joo, Kwang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.6
    • /
    • pp.499-512
    • /
    • 2016
  • The boundary reaction method(BRM) is a substructure time domain method, it removes global iterations between frequency and time domain analyses commonly required in the hybrid approaches, so that it operates as a two-step uncoupled method. The BRM offers a two-step method as follows: (1) the calculation of boundary reaction forces in the frequency domain on an interface of linear and nonlinear regions, (2) solving the wave radiation problem subjected to the boundary reaction forces in the time domain. In the time domain analysis, the near-field soil is modeled to simulate the wave radiation problem. This paper evaluates the performance of the BRM according to modeling extent of near-field soil for the nonlinear SSI analysis of base-isolated NPP structure. For this purpose, parametric studies are performed using equivalent linear SSI problems. The accuracy of the BRM solution is evaluated by comparing the BRM solution with that of conventional SSI seismic technique. The numerical results show that the soil condition affects the modeling range of near-field soil for the BRM analysis as well as the size of the basemat. Finally, the BRM is applied for the nonlinear SSI analysis of a base-isolated NPP structure to demonstrate the accuracy and effectiveness of the method.

Oxidative-Coupling Reaction of Aromatic Compounds by Mn Oxide and Its Application for Contaminated Soil Remediation (망간산화물에 의한 방향족 유기화합물의 산화-공유결합반응 및 이를 이용한 오염토양 정화기법)

  • Kang, Ki-Hoon;Shin, Hyun-Sang;Nam, Kyoung-Phile
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.5
    • /
    • pp.115-123
    • /
    • 2007
  • Immobilization of contaminants in subsurface environment is one of the major processes that determine their fate. Especially, immobilization by oxidative-coupling reactions, which is irreversible in the bio-chemical reactions and results in a significant reduction of toxicity, can be successfully applied for the remediation of contaminated soil and groundwater more effectively than conventional degradation. As a catalyst of this oxidative-coupling reaction, manganese oxide has many advantages in practical aspects as compared to microorganisms or oxidoreductive enzymes extracted from microorganisms, fungi, or plants. This paper is to present recent research achievements on the treatment mechanisms of various organic contaminants by manganese oxide. Especially, treatment methods of non-reactive organic compounds to Mn oxide are the main focus; i.e., application of reaction mediator, PAHs treatment method, combination with an appropriate pretreatment such as reduction using $Fe^0$, which suggests the potential of a wide range of engineering application. Concerning the natural carbon cycle processes, immobilization and stabilization by oxidative coupling reaction can be effectively applied as a environmentally-friend remediation method especially for aromatic contaminants which possess a high resistance to degradation.

Effects of the Soil Moisture and Hardness on the Drawing Performance of a Two-Wheel Tractor. (토양수분과 경도가 동력경운기의 견인성능에 미치는 영향)

  • 박호석;차균도
    • Journal of Biosystems Engineering
    • /
    • v.2 no.1
    • /
    • pp.25-32
    • /
    • 1977
  • This experiment was conducted in order to find out the drawing performance of a two-wheel tractor under different levels of the soil moisture and hardness, so as to obtain some basic data for improving their drawing performance. With fairly homogeneous soil, 5 levels of soil moisture contents (8, 13, 17, 20 and 23%) and 3 levels of soil hardness (0 , 2 and 4kg/$cm^2$) were selected for this experiment.The summerized results are as follows ;1. The draft force, on the hard soil (hardness ; 4kg/$cm^2$), had a distinct tendency to decrease with the increasing soil moisture. On the medium soil (hardness ; 2 kg/$cm^2$), and the soft soil (hardness ; 0kg$cm^2$), the draft force showed the highest when the moisture contents were within the range of 16-19%.But the maximum draft force, on the soft soil, was higher than that on the medium soil by 10 %. 2. The driving axle torque increased with increasing soil by 10 %. 3.The values of horizontal distance between the soil reaction point and axle shaft were within the range of 0~10cm , and it had the tendency to increase with the increasing soil moisture. Also, it s value was the largest on the hard soil and the smallest on the soft soil. 4.The tractive efficiency decreased with the increasing soil moisture. On the hard soil, the average value of tractive efficiency was higher than that on the medium soil by 19.0% and that on the soft soil was lower than that on the medium soil. 5.The traction ratio were within the range of 30 ~45%, and their changing tendency with respect to the soil moisture was similar to that in the case of the draft force. 6. The travel resistance ratio tended to increased with increasing soil moisture, and the highest value was found on the soft soil, and the lowest on the hard soil.

  • PDF

Effects of using silica fume and lime in the treatment of kaolin soft clay

  • Alrubaye, Ali Jamal;Hasan, Muzamir;Fattah, Mohammed Y.
    • Geomechanics and Engineering
    • /
    • v.14 no.3
    • /
    • pp.247-255
    • /
    • 2018
  • Soil stabilization can make the soils becoming more stable by using an admixture to the soil. Lime stabilization enhances the engineering properties of soil, which includes reducing soil plasticity, increasing optimum moisture content, decreasing maximum dry density and improving soil compaction. Silica fume is utilized as a pozzolanic material in the application of soil stabilization. Silica fume was once considered non-environmental friendly. In this paper, the materials required are kaolin grade S300, lime and silica fume. The focus of the study is on the determination of the physical properties of the soils tested and the consolidation of kaolin mixed with 6% silica fume and different percentages (3%, 5%, 7% and 9%) of lime. Consolidation test is carried out on the kaolin and the mixtures of soil-lime-silica fume to investigate the effect of lime stabilization with silica fume additives on the consolidation of the mixtures. Based on the results obtained, all soil samples are indicated as soils with medium plasticity. For mixtures with 0% to 9% of lime with 6% SF, the decrease in the maximum dry density is about 15.9% and the increase in the optimum moisture content is about 23.5%. Decreases in the coefficient of permeability of the mixtures occur if compared to the coefficient of permeability of kaolin soft clay itself reduce the compression index (Cc) more than L-SF soil mix due to pozzolanic reaction between lime and silica fume and the optimum percent of lime-silica fume was found to be (5%+6%) mix. The average coefficient of volume compressibility decreases with increasing the stabilizer content due to pozzolanic reaction happening within the soil which results in changes in the soil matrix. Lime content +6% silica fume mix can reduce the coefficient of consolidation from at 3%L+6%SF, thereafter there is an increase from 9%L+6%SF mix. The optimal percentage of lime silica fume combination is attained at 5.0% lime and 6.0% silica fume in order to improve the shear strength of kaolin soft clay. Microstructural development took place in the stabilized soil due to increase in lime content of tertiary clay stabilized with 7% lime and 4% silica fume together.

Lime Treatment of Waterworks Sludges for Soil Cover in Municipal Landfilling Site (석회처리에 의한 정수 슬러지의 복토재 활용에 관한 연구)

  • Lim, Sung-Jin;Lee, Jae-Bok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.3
    • /
    • pp.231-239
    • /
    • 2000
  • Water treatment processes produce sludges resulting from water clarification. Sludge production amount increases each year and its treatment and disposal is growing to social problems according to water demand increase. Water treatment plant sludges can be modified to soil cover in sanitary landfill site through the lime treatment. Compression strength of $1.0kg/cm^2$ or more is recommended for soil cover material in municipal landfilling site. Compression and shear strength properties of modified sludges showed material property improvement applicable for soil cover alternatives. Solidification effect of the modified sludge was observed through the scanning electron microscope. Extraction tests for hazardous components in sludges revealed that extraction levels of cadmium, copper, and lead were below the regulated criteria. When adding 10% calcium hydroxide to water treatment plant sludges, the modified sludges can reach material properties for cover soil after 28 days solidification reaction.

  • PDF

Application of DEM to Simulate Interaction between Soil and Tire Lug

  • Oida, A.;Ohkubo, S.
    • Agricultural and Biosystems Engineering
    • /
    • v.1 no.1
    • /
    • pp.1-6
    • /
    • 2000
  • Using the modified DEM (Distinct Element Model), which we proposed, the effect of cross section of tire lug on the tire performance was simulated. Though the DEM has an advantage over the FEM when it is applied to simulate the behavior of discrete assembly of particles such as soil, there was still a problem in the case of conventional DEM, that the simulated movement of particles was too free. We constructed a new mechanical model (modified DEM) which can take account of the effect of adhesion between particles. It is shown that the soil deformation is simulated by the modified DEM better than the conventional DEM. Comparing the simulated soil reaction to the tire lug with the experimental results, the adequate DEM parameters were found. It is also indicated possible to find the effect of lug cross section shape on the tractive performance of tire by the DEM simulation.

  • PDF

Analysis of Static and Dynamic Characteristics of Reinforced Roadbed Materials (철도 강화노반재료의 정ㆍ동적 특성 분석)

  • 황선근;신민호;이성혁;이시한;최찬용
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.1
    • /
    • pp.34-41
    • /
    • 2000
  • The analysis of static and dynamic characteristics of reinforced roadbed materials was performed through model and laboratory tests. The strength characteristic of reinforced roadbed materials such as HMS-25 and soil were investigated through the unconfined axial compression test, the model soil box test and the combined resonant column and torsional shear test. The unconfined axial compression strength of HMS-25 shows a steady increasement in strength due to the chemical hardening reaction between HMS-25 and water. The result of model soil box test reveals that railroad roadbed of HMS-25 is better than that of soil in several aspects, such as, bearing capacity and settlement. The combined resonant column and torsional shear test result indicates that shear modulus of HMS-25 and soil increase with the power of 0.5 to the confining pressure and linear relationship to normalized shear modulus and damping ratio.

  • PDF

Data-driven modeling of optimal intensity measure of soil-nailed wall structures

  • Massoumeh Bayat;Mahdi Bayat;Mahmoud Bayat
    • Structural Engineering and Mechanics
    • /
    • v.86 no.1
    • /
    • pp.85-92
    • /
    • 2023
  • This article examines the seismic vulnerability of soil nail wall structures. Detailed information regarding finite element modeling has been provided. The fragility function evaluates the relationship between ground motion intensities and the probability of surpassing a specific level of damage. The use of incremental dynamic analysis (IDA) has been applied to the soil nail wall against low to severe ground motions. In the nonlinear dynamic analysis of the soil nail wall, a set of twenty seismic ground motions with varying PGA ranges are used. The numerical results demonstrate that the soil-nailed wall reaction is extremely sensitive to earthquake ground vibrations under different intensity measures (IM). In addition, the analytical fragility curve is provided for various intensity values.

Degradation Kinetic and Mechanism of Methyl Tert-butyl Ether (MTBE) by the Modified Photo-Fenton Reaction (Modified Photo-Fenton Reaction을 이용한 Methyl Tert-butyl Ether (MTBE)의 분해 Kinetic 및 메커니즘 규명에 관한 연구)

  • Kim, Min-Kyoung;Kong, Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.6
    • /
    • pp.69-75
    • /
    • 2006
  • Improper disposal of petroleum and spills from underground storage tanks have created large areas with highly toxic contamination of the soil and groundwater. Methyl tert-butyl ether (MTBE) is widely used as a fuel additive because of its advantageous properties of increasing the octane value and reducing carbon monoxide and hydrocarbon exhausts. However, MTBE is categorized as a possible human carcinogen. This research investigated the Modified Photo-Fenton system which is based on the Modified Fenton reaction and UV light irradiation. The Modified Fenton reaction is effective for MTBE degradation near a neutral pH, using the ferric ion complex composed of a ferric ion and environmentally friendly organic chelating agents. This research was intended to treat high concentrations of MTBE; thus, 1,000 mg/L MTBE was chosen. The objectives of this research are to find the optimal reaction conditions and to elucidate the kinetic and mechanism of MTBE degradation by the Modified Photo-Fenton reaction. Based on the results of experiments, citrate was chosen among eight chelating agents as the candidate for the Modified Photo-Fenton reaction because it has a relatively higher final pH and MTBE removal efficiency than the others, and it has a relatively low toxicity and is rapidly biodegradable. MTBE degradation was found to follow pseudo-first-order kinetics. Under the optimum conditions, [$Fe^{3+}$] : [Citrate] = 1 mM: 4 mM, 3% $H_2O_2$, 17.4 kWh/L UV dose, and initial pH 6.0, the 1000 ppm MTBE was degraded by 86.75% within 6 hours and 99.99% within 16 hours. The final pH value was 6.02. The degradation mechanism of MTBE by the Modified Photo-Fenton Reaction included two diverse pathways and tert-butyl formate (TBF) was identified to be the major degradation intermediate. Attributed to the high solubility, stability, and reactivity of the ferric-citrate complexes in the near neutral condition, this Modified Photo-Fenton reaction is a promising treatment process for high concentrations of MTBE under or near a neutral pH.