DOI QR코드

DOI QR Code

Data-driven modeling of optimal intensity measure of soil-nailed wall structures

  • Massoumeh Bayat (Department of Computer Engineering, Mashhad Branch, Islamic Azad University) ;
  • Mahdi Bayat (Department of Civil Engineering, Roudehen Branch, Islamic Azad University) ;
  • Mahmoud Bayat (Department of Civil Engineering, Roudehen Branch, Islamic Azad University)
  • Received : 2020.02.23
  • Accepted : 2023.03.06
  • Published : 2023.04.10

Abstract

This article examines the seismic vulnerability of soil nail wall structures. Detailed information regarding finite element modeling has been provided. The fragility function evaluates the relationship between ground motion intensities and the probability of surpassing a specific level of damage. The use of incremental dynamic analysis (IDA) has been applied to the soil nail wall against low to severe ground motions. In the nonlinear dynamic analysis of the soil nail wall, a set of twenty seismic ground motions with varying PGA ranges are used. The numerical results demonstrate that the soil-nailed wall reaction is extremely sensitive to earthquake ground vibrations under different intensity measures (IM). In addition, the analytical fragility curve is provided for various intensity values.

Keywords

References

  1. Agency, F.E.M. (2009), Quantification of Building Seismic Performance Factors, FEMA P695, Washington, DC.
  2. Ahmadi, H.R. and Anvari, D. (2018), "New damage index based on least squares distance for damage diagnosis in steel girder of bridge's deck", Struct. Control Hlth. Monit., 25(10), e2232. https://doi.org/10.1002/stc.2232.
  3. Akcay, B., Sengul, C. and Tasdemir, M.A. (2016), "Fracture behavior and pore structure of concrete with metakaolin", Adv. Concrete Constr., 4(2), 71-88. http://doi.org/10.12989/acc.2016.4.2.071.
  4. Ardakani, A., Bayat, M. and Javanmard, M. (2014), "Numerical modeling of soil nail walls considering Mohr Coulomb, hardening soil and hardening soil with small-strain stiffness effect models", Geomech. Eng., 6(4), 391-401. https://doi.org/10.12989/gae.2014.6.4.391.
  5. Ardakani, A., Gholampoor, N., Bayat, M. and Bayat, M. (2018), "Evaluation of monotonic and cyclic behaviour of geotextile encased stone columns", Struct. Eng. Mech., 65(1), 81-89. https://doi.org/10.12989/sem.2018.65.1.081.
  6. Basoz, N. and Kiremidjian, A.S. (1998), "Evaluation of bridge damage data from the Loma Prieta and Northridge", California Earthquakes.
  7. Bayat, M., Ahmadi, H.R. and Mahdavi, N. (2019b), "Application of power spectral density function for damage diagnosis of bridge piers", Struct. Eng. Mech., 71(1), 57-63. https://doi.org/10.12989/sem.2019.71.1.057.
  8. Bayat, M., Ahmadi, H.R., Kia, M. and Cao, M. (2019a), "Probabilistic seismic demand of isolated straight concrete girder highway bridges using fragility functions", Adv. Concrete Constr., 7(3), 183-189. https://doi.org/10.12989/acc.2019.7.3.183.
  9. Bayat, M., Bayat, M. and Bayat, M. (2011), "An analytical approach on a mass grounded by linear and nonlinear springs in series", Int. J. Phys. Sci., 6(2), 229-236. https://doi.org/10.5897/IJPS10.662.
  10. Bayat, M., Emadi, A., Kosariyeh, A.H., Kia, M. and Bayat, M. (2022), "Collapse fragility analysis of the soil nail walls with shotcrete concrete layers", Comput. Concrete, 29(5), 279-283. https://doi.org/10.12989/cac.2022.29.5.279.
  11. Bayat, M., Kosarieh, A.H. and Javanmard, M. (2021a), "Probabilistic seismic demand analysis of soil nail wall structures using bayesian linear regression approach", Sustain., 13(11), 5782. https://doi.org/10.3390/su13115782.
  12. Bayat, M., Kosarieh, A.H. and Javanmard, M. (2021b), "Nonlinear dynamic analysis of soil nail walls considering different modeling approaches", Steel Compos. Struct., 39(6), 737-750. https://doi.org/10.12989/scs.2021.39.6.737.
  13. Bayat, M., Pakar, I. and Emadi, A. (2013), "Vibration of electrostatically actuated microbeam by means of homotopy perturbation method", Struct. Eng. Mech., 48(6), 823-831. https://doi.org/10.12989/sem.2013.48.6.823.
  14. Castaldo, P. and Amendola, G. (2021), "Optimal DCFP bearing properties and seismic performance assessment in nondimensional form for isolated bridges", Earthq. Eng. Struct. Dyn., 50(9), 2442-2461. https://doi.org/10.1002/eqe.3454.
  15. Castaldo, P. and Amendola, G. (2021), "Optimal sliding friction coefficients for isolated viaducts and bridges: A comparison study", Struct. Control Hlth. Monit., 28(12), e2838. https://doi.org/10.1002/stc.2838.
  16. Castaldo, P. and De Iuliis, M. (2014), "Effects of deep excavation on seismic vulnerability of existing reinforced concrete framed structures", Soil Dyn. Earthq. Eng., 64, 102-112. https://doi.org/10.1016/j.soildyn.2014.05.005.
  17. Castaldo, P., Mancini, G. and Palazzo, B. (2018), "Seismic reliability-based robustness assessment of three-dimensional reinforced concrete systems equipped with single-concave sliding devices", Eng. Struct., 163, 373-387. https://doi.org/10.1016/j.engstruct.2018.02.067.
  18. Castaldo, P., Palazzo, B. and Ferrentino, T. (2017), "Seismic reliability-based ductility demand evaluation for inelastic base-isolated structures with friction pendulum devices", Earthq. Eng. Struct. Dyn., 46(8), 1245-1266. https://doi.org/10.1002/eqe.2854.
  19. Deepu, S.P., Prajapat, K. and Ray-Chaudhuri, S. (2014), "Seismic vulnerability of skew bridges under bidirectional ground motions", Eng. Struct., 71(9), 150-160. https://doi.org/10.1016/j.engstruct.2014.04.013.
  20. FEMA (2003), HAZUS-MH MR1: Technical Manual, Federal Emergency Management Agency, Washington, DC.
  21. Feng, X. and Xia, X.H. and Wang, J.H. (2009), "The application of small strain model in excavation", No. 50679041, The National Natural Science Foundation of China.
  22. Han, J. and Wu, H.R. (2016), "A new transfer matrix method for curved beams and comparison study", Lab. Res. Expl., 35(12), 18-21.
  23. Ismail Ibrahim, K.M.H. and Ibrahim, T.E. (2013), "Effect of historical earthquakes on pre-stressed anchor tie back diaphragm wall and on near-by building", HBRC J., 9(1), 60-67. https://doi.org/10.1016/j.hbrcj.2013.02.008.
  24. Karanth, S.S., Ghorpade, V.G. and Rao, H.S. (2017), "Shear and impact strength of waste plastic fibre reinforced concrete", Adv. Concrete Constr., 5(2), 173-182. https://doi.org/10.12989/acc.2017.5.2.173.
  25. Kia, M. and Banazadeh, M. (2016), "Closed-form fragility analysis of the steel moment resisting frames", Steel Compos. Struct., 21(1), 93-107. https://doi.org/10.12989/scs.2016.21.1.093.
  26. Kitayama, S. and Constantinou, M.C. (2018), "Collapse performance of seismically isolated buildings designed by the procedures of ASCE/SEI 7", Eng. Struct., 164, 243-258. https://doi.org/10.1016/j.engstruct.2018.03.008.
  27. Muntasir Billah, A. and Alam, M.S. (2015), "Seismic fragility assessment of concrete bridge pier reinforced with superelastic shape memory alloy", Earthq. Spectra, 31(3), 1515-1541. https://doi.org/10.1193/112512EQS337M.
  28. Noorzad, R. and Omidvar, M. (2010), "Seismic displacement analysis of embankment dams with reinforced cohesive shell", Soil Dyn. Earthq. Eng., 30(11), 1149-1157. https://doi.org/10.1016/j.soildyn.2010.04.023.
  29. Padgett, J.E., Nielson, B.G. and DesRoches, R. (2008), "Selection of optimal intensity measures in probabilistic seismic demand models of highway bridge portfolios", Earthq. Eng. Struct. Dyn., 37(5), 711-725. https://doi.org/10.1002/eqe.782.
  30. Parghi, A. and Alam, M.S. (2017), "Seismic collapse assessment of non-seismically designed circular RC bridge piers retrofitted with FRP composites", Compos. Struct., 160, 901-916. https://doi.org/10.1016/j.compstruct.2016.10.094.
  31. Shinozuka, M., Feng, M.Q., Kim, H.K. and Kim, S.H. (2000a), "Nonlinear static procedure for fragility curve development", J. Eng. Mech., 126(12), 1287-1295. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:12(1287).
  32. Shinozuka, M., Feng, M.Q., Lee, J. and Naganuma, T. (2000b), "Statistical analysis of fragility curves", J. Eng. Mech., 126(12), 1224-1231. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:12(1224).
  33. Sumathi, A. and Vignesh, A.S. (2017), "Study on behavior of RCC beams with externally bonded FRP members in flexure", Adv. Concrete Constr., 5(6), 625-638. https://doi.org/10.12989/acc.2017.5.6.625.
  34. Tavakoli, H., Kutanaei, S.S. and Hosseini, S.H. (2019), "Assessment of seismic amplification factor of excavation with support system", Earthq. Eng. Eng. Vib., 18(3), 555-566. https://doi.org/10.1007/s11803-019-0521-x.
  35. Yamazaki, F., Motomura, H. and Hamada, T. (2000), "Damage assessment of expressway networks in Japan based on seismic monitoring", Proceedings of the 12th World Conference on Earthquake Engineering, January.