• Title/Summary/Keyword: Soil pollution standard

Search Result 109, Processing Time 0.022 seconds

Environmental Impact and Safe Vegetable Production of Korean Organic Farming only Appling Organic Fertilizer to Maintain/Increase Soil Fertility

  • Sohn, Sang-Mok;Kim, Young-Ho
    • Korean Journal of Organic Agriculture
    • /
    • v.8 no.1
    • /
    • pp.111-129
    • /
    • 1999
  • In order to get some basic data to check the environmental sound function against soil and water pollution and the safe vegetable production by korean organic farming where an internationally recognized basic concepts of soil fertility management for organic farming is not practiced and only applying the organic fertilizer to maintain the soil fertility, the chemical characteristics of soils and $NO_{3}^{-}$ content of chinese cabbage and lettuce cultivated by the conventional farming, greenhouse cultivation and organic farming were investigated. The highest value of $NO_{3}^{-}$-N in 0~30cm subsoil among the three different farming systems was found in the subsoil of organic farming and it was 3.6 and 6.6 times higher than those of conventional farming in chinese cabbage and lettuce respectively. $P_2O_5$ accumulation in the rhizosphere by organic farming also showed the highest value. The accumulation of $NO_{3}^{-}$-N and $P_2O_5$ in organic farming soil were similar or even more higher to those of greenhouse cultivation. The $NO_{3}^{-}$ accumulation in the vegetable by organic farming reached 3224ppm for chinese cabbage and 2543ppm for lettuce, and it were 4.7 and 6.4 times higher than those by conventional farming. It was concluded that there is urgently necessary to introduce the main concepts of soil fertility management of the Basic Standard of IFOAM, EU regulation and FAO/WHO Codex Alimentarius on organic agriculture(draft) into korean organic agriculture for the operation of environmental sound system and the production of sate vegetable in terms of $NO_{3}^{-}$ content.

  • PDF

Investigation of Pollution of Polycyclic Aromatic Hydrocarbons and Heavy Metals in Soil near Railway Rails (철도레일 부근 토양의 다환방향족 탄화수소 및 중금속 오염도 조사)

  • Choi, Hyun-Kyung;Yoon, In-Ju;Shin, Tae-Cheon;Kim, Young-Hun
    • Journal of Environmental Science International
    • /
    • v.27 no.11
    • /
    • pp.947-956
    • /
    • 2018
  • Trains have been a major means of transport in Korea during these past decades. However, train facilities such as stations and repair shops are contaminated with organic and inorganic substances. There is a high probability of train facility contamination with polyaromatic hydrocarbons (PAHs). This study evaluated the PAH and heavy metal contamination of soil near railroads in the Kyungpook area. A total of 18 soil samples were collected from the railroads and analyzed for 16 PAHs and 6 heavy metal species. The contamination level of the top soil was found to be slightly higher than that of the subsoil for contamination with PAHs. The ratio of carcinogenic PAH concentration to the total PAH concentration was relatively high, with a maximum of 0.9. The toxicity equivalent (TEQ) of the PAHs were 500.6 ng/kg in the topsoil and 355.5 ng/kg in the subsoil. The ratio of low molecular PAHs (LPAHs) to high molecular PAHs (LPAHs) ranged from 6.7 to 29.5; this shows that contamination is primarily due to combustion of fuel rather than due to petroleum. The ratio of phenanthrene to anthracene and the ratio of fluoranthene to pyrene also show that contamination occurred due to combustion for transportation. The heavy metal contamination level was lower than the Korean standard, but higher than the background concentration; this indicates that the soil was affected by the operation of the railways.

Creation of an Environmental Forest as an Ecological Restoration

  • Lee, Chang-Seok;You, Young-Han
    • The Korean Journal of Ecology
    • /
    • v.24 no.2
    • /
    • pp.101-109
    • /
    • 2001
  • We created an environmental forest on the basis of ecological design around the incineration plant of Jindo Engineering and Construction Co., Ltd., which is located in Jeongwang-dong, Siheung-si, Kyunggi-do. To get ecological information of this site, physico-chemical properties of soil on salt marsh, which is located close to the syudy site and of forest soil transported from other sites for ecological restoration were analyzed. Texture of salt marsh and transported soils were loam and sandy loam, respectively. pH, organic matter, T-N, available P, and exchangeable K and Na contents of salt marsh and transported forest soils were 6.7 and 5.4, 4.1 and 0.4%, 1.0 and 0.3mg/g, 46.7 and 6.8ppm, 521 and 207ppm, and 3.8 and 0.5mg/g, respectively. Introduced plants were selected among the dominant species of forests and the species composing the potential natural vegetation around the present study site. Those plants were selected again by considering the tolerances to air pollution and to salt, and their availability. Selected trees were Pinus thunbergii, Sophora japonica, Celtis sinensis, Quercus aliena, Q. serrata, Q. dentata, and Q. acutissima. Selected sub-trees were Albizzia julibrissin, Koelreuteria poniculata, and Styrax japonica and shrubs were Rhododendron yedoense var. poukhanense, R. mucronulatum, Callicarpa japonica, Euonymus alatus, E. japonica, and R. schlippenbachii. On the other hand, introduction of herbs was not considered except for Liriope platyphylla, which was ornamentally planted in one site. Planting bed of mound type was adopted to provide the fine drainage system. Mound was designed to furnish litter, A, B, and C layers simuating the profile of forest soil. Slope of mound was mulched by rice straw of 2cm in thickness to prevent for sliding of litter and soil in cases of strong wind or heavy rain. Height of mound was designed to secure more than 1 m by combining A and B layers. Narrow zones, in which mound with stable slope degree cannot be prepared, was designed to equip the standard soil depth with the introduction of stone for supporting. On the other hand, plants with shallow root system were arranged in some zones, in which satisfactory soil depth cannot be ensured. Plants were arranged in the order of tree, sub-tree, and shrub from center to edge on the mound to make a mature forest of a dome shape in the future. Dispersion of plants was designed to be random pattern rather than clumped one. Problems on creation of the environmental forest by such ecological design were found to be management or inspection by non-specialized project operators and inspecting officers, and regulations for construction without ecological background. Alternative plans to solve such problems were suggested.

  • PDF

Mathematical model for reactive transport of heavy metals in soil column: Based on PHREEQC and HP1 simulators

  • Tameh, Fatemeh Izadi;Asadollahfardi, Gholamreza;Darban, Ahmad Khodadadi
    • Advances in environmental research
    • /
    • v.6 no.1
    • /
    • pp.67-81
    • /
    • 2017
  • Mining activities play a significant role in environmental pollution by producing large amounts of tailings which comprise heavy metals. The impressive increase in mining activities in recent decades, due to their high influence on the industry of developing countries, duplicates the need for a substantial effort to develop and apply efficient measures of pollution control, mitigation, and abatement. In this study, our objective was to investigate the effect of simulation of the leachate, pH and inflow intensity of transport of $Pb^{2+}$, $Zn^{2+}$, and $Cd^{2+}$ through Lakan lead and zinc plant tailings, in Iran, and to evaluate the modeling efficiency by comparing the modeling results and the results obtained from previous column studies. We used the HP1 model and the PHREEQC database to simulate metals transport through a saturated soil column during a 15 day time period. The simulations assumed local equilibrium. As expected, a lower pH and inflow intensity increased metal transport. The retardation of heavy metals followed the order $Zn^{2+}$ > $Pb^{2+}$ > $Cd^{2+}$ and the removal concentrations of Cd, Pb, and Zn at the inflow intensity critical scenario, and Cd and Pb at inflow acidity critical scenario exceeded the allowable EPA and Iranian's 1053 standard thresholds. However, although the simulation results generally agreed well with the results of the column study, improvements are expected by using multi-dimensional models and a kinetic modeling approach for the reactions involved. The results of such investigations will be highly useful for designing preventative strategies to control reactive transport of hazardous metals and minimize their environmental effects.

Recovery of Ammonium Nitrogen and Phosphate from the Piggery Wastewater as Struvite and Its Assessment for the Reduction of Water Pollution Through the Field Test

  • Daeik Kim;Sun Jin Hwang;Su Ho Bae;Keon Sang Ryoo
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.2
    • /
    • pp.83-92
    • /
    • 2023
  • Excess N and P from the livestock manure applied to farmlands, have entered the water systems and poses a serious threat to the natural environment. Consequently, there has been recent awareness towards the management of livestock manure and its related fields. In this study, piggery wastewater was collected from a piggery in Pohang city, Korea. At 800℃, thermal decomposition of a natural stone, magnesite (MgCO3), yielded powered MgO with particle sizes ranging between 10 to 100 ㎛. Furthermore, NH4+-N and PO43--P were recovered as struvite precipitates from the piggery wastewater, by adjusting the pH with MgO and H3PO4. At pH 10, the recovery efficiencies of NH4+-N and PO43--P were found to be 86.1% and 94.1%, respectively. Using an X-ray Diffractometer (XRD), the struvite in the precipitate was confirmed to be consistent with standard pure struvite. Further, the purity of the struvite precipitate was analyzed using an energy dispersive X-ray (EDX) and thermal gravimetry-differential thermal analysis (TG-DTA), and found to be between 79.2% and 93.0%. Additionally, struvite-containing piggery wastewater and sawdust were mixed in a weight ratio of 2.5:1 and processed into a mature compost. The newly manufactured compost passed all quality standards required for first-class graded livestock composts. Moreover, this compost was sprayed directly onto the soil at the test site, and various parameters of the soil's effluent, such as total organic carbon (TOC), total nitrogen (T-N), total phosphorus (T-P), and dissolved oxygen (DO), were analyzed and measured. Based on these results, it is determined that the newly manufactured compost can more significantly reduce water pollution than commercial compost.

Potential Contamination of Soil and Groundwater from the Residual Mine Tailings in the Restored Abandoned Mine Area : Shihung Mine Area (페광산 복구지역 잔류장미로 인한 주변 지하수${\cdot}$토양 오염가능성-시흥광산 사례)

  • 정예진;이상훈
    • Economic and Environmental Geology
    • /
    • v.34 no.5
    • /
    • pp.461-470
    • /
    • 2001
  • The Shihung mine was restored in the early 90's after abandonment for 20 yews since 1973. Although disposed mine tailings were removed and the site was replaced by an incineration plant, still some residual mine tailings remain in the places including the old mine tailing ditposal area and the adjacent agricultural area. These residual mine tailings are prone to impose an adverse impact on the soil and groundwater and needs investigation for the potential contamination. Mine tailing samples were collected from the old tailing disposal area and the iii paddy. The porewater from the mine tailing were extracted and analysed to investigate chemical changes along the reaction path. Batch leaching tests were also carried out in the laboratory to find any supporting evidence found in the field analysis. Evidence of elemental leaching was confirmed both by the mine tailing and the porewater chemistry in them. The element concentrations of Cu, Cd, Pb, Zn in the porewater exceed the standard for drinking water of Korean government and US EPA. Leaching of heavy metals from the mine tailing seem to be responsible for the contamination. In batch leaching test. heavy metals were either continuous1y released or declined rapidly. Combining the information with porewater variation with depths and the geochemical meodeling results, most of elements are controlled by dissolution and/or precipitation processes, with some solubility controlling solid phases (Cu, Pb, Fe and Zn). Batch leaching test conducted at fixed pH 4 showed much higher releases for the heavy metals up to 400 times (Zn) and this area is becoming more vulnerable to soil and groundwater pollution as precipitation pH shifts to acidic condition.

  • PDF

A Study on the Method for Ecological Restoration on Abandoned Concrete-paved Road - Focused on the Experimental Construction Site in Young Dong Province of GyungBu Express Highway(227.24~229.04km) - (콘크리트 폐도의 생태복원 방안 모색에 관한 연구 - 경부선 영동군 황간지역 시험시공지를 중심으로(경부고속도로 227.24~229.04km 지점) -)

  • Kim, Nam Choon;Ann, Phil Gun;No, Su Dae;Kim, Do Hee
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.15 no.4
    • /
    • pp.119-132
    • /
    • 2012
  • The unmanaged abandoned concrete roads are vulnerable toward the issues on soil and water pollution, which requires flexible managing method such as eco-corridor after the process of ecological restoration. Among various alternations of abandoned concrete-paved roads, ecological restoration technique may be the most suitable method in sites including high quality of natural environment. Therefore, as in Young dong province, GyungBu express highway (227.24~229.04km), which is near to Hwang-gan IC, the survey to measure its effect of soil under the paving and water pollution by abandoned concrete roads was discussed. Then, the restoration method of plantings of landscape trees and hydro-seeding methods of artificial soil media was appraised through consecutive monitoring. The soil adequacy analysis shows lower percentage of heavy metal substance in each depth level compared to standard limit stated by the Ministry of Environment, along with low concerns raised after the analysis on heavy metal content of the spilled water on the concrete roads. Meanwhile, Korean Weigela (Weigela subsessilis L.H. Baily) was found to be withered in small-scale landscape trees planting sites. Among the seeding plants. the family of leguminosae, Silene armeria, Dendranthema boreale, Caryopteris incana and Aster yomena show good establishment results. Overall studies on planting of small and large landscape trees, planting method of container plants, planting method of ground cover plants, and germination and development trend of seeding plants of the experimental restoration site on abandoned concrete roads are revealing specific trends in the way landscape woody plants establishment and growth. Finally, this study suggests further studies and survey on varied plant restoration methods on abandoned concrete-roads for developed design guidelines of their methods.

Study on the Recycling of Waste Soil from Constructed Site - Focused on Agricultural Planting Soil - (순환토사 재활용에 관한 연구 - 농업성토용 중심으로 -)

  • Kim, Jae-Hyung;Park, Je-Chul
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.1
    • /
    • pp.16-21
    • /
    • 2019
  • This study has its aim to judge both applicability and suitability of recycling of waste soil for the use of farmland amelioration and low-lying farmland reclamation through growth and development experiment and component analysis. As results of physical characteristic evaluation on recycling of waste soil, the classification based on unified soil classification system has investigated as SW and SP affiliation and soil classification has appeared to be a loamy sand. As results of chemical component analysis, pH has appeared to be 7.0~8.4 which is relatively higher than general soil, however, heavy metal has investigated within the 1 region's standard value of soil pollution standards. As results of germination experiment, when using it by mixing recycling soil less than 75%, there is no significant influence on germination, and in the growth and development experiment, when using horticultural bed soil which is mixed with less than 40% of recycling of waste soil, it has confirmed that there is no significance difference with general soil. In case of farmland, the growth disorder of recycling of waste soil rate no more than 40% has shown that it has relatively small influences, and in case of using it by mixing with agricultural soil, it has evaluated to require concrete review of factors which may restrict growth condition including nutrition and pH.

A Model for the Development of Regionally Circular Agriculture, and Consideration of Technological and Economic Problems (지역순환형 농업의 발전모델과 기술 및 경제적 문제점 고찰)

  • 윤성이
    • Korean Journal of Organic Agriculture
    • /
    • v.11 no.2
    • /
    • pp.1-21
    • /
    • 2003
  • Customary agriculture seeks to increase production and supply people with safe foods. Thus. the promotion and establishment of organic agriculture are required to reduce water and soil pollution caused by customary agriculture. Although organic agriculture is an agricultural technology system whose basic principle is organic water circulation in agronomic agriculture and livestock industry. the livestock raising sector has not been developed in Korean organic agriculture: hence the limited development of agronomic agriculture. This study therefore sought to develop a standardized model connected with organic livestock raising and organic agronomic agriculture to secure symmetric and continued development. Specifically, this study reviewed the technological and economic problems related to the development of a naturally circular standard model where organic agronomic agriculture and organic livestock raising are connected. Likewise, a model for calculating the appropriate quantity of fertilizers to be applied and appropriate number of livestock to be bred was proposed as important factors in the development of a regionally circular agriculture model, and an alternative to a system connecting the two factors suggested.

  • PDF

Application Load Duration Curve for Evaluation of Impaired Watershed at TMDL Unit Watershed in Korea (수질오염총량 단위유역의 유량조건별 수체 손상 평가를 위한 부하지속곡선 적용성 연구)

  • Hwang, Ha-Sun;Yoon, Chun-Gyeong;Kim, Ji-Tae
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.6
    • /
    • pp.903-909
    • /
    • 2010
  • The purpose of this study was evaluated on the applicability of Load Duration Curve Method (LDC Method) using HSPF watershed model and sampling data for efficient TMDLs in Korea. The LDC Method was used for assessment pollutant characteristics in watershed and water quality variation in each water flow level. Load Duration Curve is applied for judge the level of impaired water-body and can be estimated the impaired level by pollutant, such as BOD, T-N, and T-P in this study depending on variation of stream flow. As a result, BOD, T-P was usually exceed the standard value at low flow and dry hydrologic period. Improvement of effluent concentration from WWTP and riparian buffer protection zone are effective to improve the water quality. T-N showed the worst condition at mid-range hydrologic period and moist hydrologic period. Therefore, soil erosion control program and BMPs for non-point source pollution control is effective for recovery the water quality, which can be useful method for management of water quality in the plan of recovery water quality spontaneously. Applicability of LDC Method was evaluated in the Nakbon A watershed. However, we need to consider more detailed and accumulated data set such as accurate GIS data and detail pollution data, and WWTP discharge water quality data for accurate evaluation of watershed. Overall, The LDC Method is adequate for evaluation of watersheds characteristics, and its application is recommended for watershed management and TMDL Implementation.