• Title/Summary/Keyword: Soil plasticity model

Search Result 52, Processing Time 0.029 seconds

A Study on the Determination of Bearing Capacity of Polluted Soils with Various Concentrations (농도가 다른 오염지반의 지지력 결정에 관한 연구)

  • 안종필;박상범
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.57-69
    • /
    • 1999
  • This study investigates the existing theoretical backgrounds for bearing capacity determination according to the plasticity of soils when unsymmetrical surcharge is loaded on polluted soft soils. It also investigates the behavior of the displacement and bearing capacity by unsymmetrical surcharge on the Polluted soft soils. by comparing the analytical results and the actual measurements performed through the model test. Model tests were carried out as follows : soil tank, bearing frame and bearing plate are made for the test ; the water content in soil tank was kept constant while the contaminants in natural soils and polluted material were gradually increased ; unsymmetrical surcharge is increased at regular intervals and then the amounts of settlement, lateral displacement and upheaval are observed. In conclusion, the value of critical surcharge was expressed as $q_{ cr}= 2.78_{Cu}$ which was similar to those $Tschebotarioff(q_{cr}=3.0_{Cu)$ and $Meyerhof(q_{cr}=(B/2H+\pi/2_{Cu})$ had proposed. The value of ultimate capacity was expressed as $q_{ult}=4.84_{Cu}$ which was similar to that of Prandtl.

  • PDF

Investigation of effects of twin excavations effects on stability of a 20-storey building in sand: 3D finite element approach

  • Hemu Karira;Dildar Ali Mangnejo;Aneel Kumar;Tauha Hussain Ali;Syed Naveed Raza Shah
    • Geomechanics and Engineering
    • /
    • v.32 no.4
    • /
    • pp.427-443
    • /
    • 2023
  • Across the globe, rapid urbanization demands the construction of basements for car parking and sub way station within the vicinity of high-rise buildings supported on piled raft foundations. As a consequence, ground movements caused by such excavations could interfere with the serviceability of the building and the piled raft as well. Hence, the prediction of the building responses to the adjacent excavations is of utmost importance. This study used three-dimensional numerical modelling to capture the effects of twin excavations (final depth of each excavation, He=24 m) on a 20-storey building resting on (4×4) piled raft. Because the considered structure, pile foundation, and soil deposit are three-dimensional in nature, the adopted three-dimensional numerical modelling can provide a more realistic simulation to capture responses of the system. The hypoplastic constitutive model was used to capture soil behaviour. The concrete damaged plasticity (CDP) model was used to capture the cracking behaviour in the concrete beams, columns and piles. The computed results revealed that the first excavation- induced substantial differential settlement (i.e., tilting) in the adjacent high-rise building while second excavation caused the building tilt back with smaller rate. As a result, the building remains tilted towards the first excavation with final value of tilting of 0.28%. Consequently, the most severe tensile cracking damage at the bottom of two middle columns. At the end of twin excavations, the building load resisted by the raft reduced to half of that the load before the excavations. The reduced load transferred to the piles resulting in increment of the axial load along the entire length of piles.

Influence of Progressive Consolidation on Consolidation Behavior of Normally Consolidated Clayey Soil with Vertical Drains (연직배수재가 설치된 정규압밀 점성토 지반의 점진적 압밀이 차후 압밀거동에 미치는 영향)

  • Yune Chan-Young;Chung Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.6
    • /
    • pp.5-18
    • /
    • 2005
  • In this study, the influence of progressive consolidation from the drainage boundary on the subsequent process of consolidation was investigated. Analytical theory and numerical program f3r consolidation of clayey soil were developed based on finite difference method, in which spatial variation of permeability and volume compressibility were implemented. And model ground with normally consolidated clayey soils and a vertical drain at its center were simulated. Various types of soils with different relations between coefficient of volume compressibility and permeability and void ratio were applied. Also numerical simulations based on the properties of the normally consolidated clay at Nakdong River basin and reconstituted kaolinite soil were performed to recognize its practical impact. Consequently, it is found out that retardation of consolidation induced by progressive consolidation is very important to understand consolidation behavior on field conditions and its effect is remarkable at the initial state of consolidation, and increases with plasticity index and applied load.

S.D.O.F Macro-element for Interaction of Deep Foundation (단자유도 매크로요소를 이용한 깊은기초의 상호작용 모델)

  • Rha, Chang-Soon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.4
    • /
    • pp.347-355
    • /
    • 2008
  • In this paper single degree of freedom macro-element model was presented to investigate the interaction between soil and the deep foundation under the lateral loads. It was made by modelling each component related to the soil-structure interaction and combining them into one piece. It enhanced the conventional method that was not able to break down the interaction components in piece due to the usage of simple spring element for interaction. A proposed macro-element classified the stress components in relation to the interaction into frictional and compressive resistance. Each component was modelled using the classical plasticity theory, and finally combined in parallel. An example study was carried out using the proposed macro-element for deep foundation embedded in three layered cohesive soil. It showed improved results compared to the conventional method by producing additional information of the interaction components as well as the overall behavior of foundation.

Model Test Study on the Reinforcing Effect of Inclined System Bolting (경사볼트의 보강효과에 대한 모형시험 연구)

  • Lee, Jea-Dug;Kim, Byoung-Il;Piao, Ming-Shan;Yoo, Wan-Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5C
    • /
    • pp.231-238
    • /
    • 2012
  • The rockbolt functions as a main support, which restricts enlargement of the plasticity area and increases stability in the original ground around tunnels, and prevents a second deformation of an excavated surface by supplementing vulnerability arising from opening of the excavated surface. System bolting is generally applied if ground conditions are bad. System bolting is generally installed perpendicular to the excavation direction in every span. If a place is narrow, or it is difficult to insert bolts due to construction conditions, it may be connected and used with short bolts, or installed obliquely. In this study, laboratory model tests were performed to analyze the effect of the ground being reinforced by inclined bolts, based on a bending theory that assumes that the reinforced ground is a simple beam. In all test cases, deflections and vertical earth pressures induced by overburden soil pressure were measured. Total of 99 model tests were carried out, by changing the installation angle of bolts, lateral and longitudinal distance of bolts, and soil height. The model test results indicated that when the installation angle of bolts was less than $75^{\circ}$, deflections of model beams tended to increase rapidly. Also, the relaxed load that was calculated by earth pressure was rapidly increased when the installation angle of bolts was less than $75^{\circ}$. However, the optimum installation angle of inclined bolts was judged to be in the range of $90^{\circ}{\sim}75^{\circ}$. Also, as might be expected, the reinforcement effect of bolts was increased when the longitudinal and lateral distance of bolts was decreased.

Site response analysis using true coupled constitutive models for liquefaction triggering

  • Cristhian C. Mendoza-Bolanos;Andres Salas-Montoya;Oscar H. Moreno-Torres;Arturo I. Villegas-Andrade
    • Earthquakes and Structures
    • /
    • v.25 no.1
    • /
    • pp.27-41
    • /
    • 2023
  • This study focused on nonlinear effective stress site response analysis using two coupled constitutive models, that is, the DM model (Dafalias and Manzari 2004), which incorporated a simple plasticity sand model accounting for fabric change effects, and the PMDY03 model (Khosravifar et al. 2018), that is, a 3D model for earthquake-induced liquefaction triggering and postliquefaction response. A detailed parametric study was conducted to validate the effectiveness of nonlinear site response analysis and porewater pressure (PWP) generation through a true coupled formulation for assessing the initiation of liquefaction at ground level. The coupled models demonstrated accurate prediction of liquefaction triggering, which was in line with established empirical liquefaction triggering relations in published databases. Several limitations were identified in the evaluation of liquefaction using the cyclic stress method, despite its widespread implementation for calculating liquefaction triggering. Variations in shear stiffness, represented by changes in shear wave velocity (Vs1), exerted the most significant influence on site response. The study further indicated that substantial differences in response spectra between nonlinear total stress and nonlinear effective stress analyses primarily occurred when liquefaction was triggered or on the verge of being triggered, as shown by excess PWP ratios approaching unity. These differences diminished when liquefaction occurred towards the later stages of intense shaking. The soil response was predominantly influenced by the higher stiffness values present prior to liquefaction. A key contribution of this study was to validate the criteria used to assess the triggering of level-ground liquefaction using true coupled effective-stress constitutive models, while also confirming the reliability of numerical approximations including the PDMY03 and DM models. These models effectively captured the principal characteristics of liquefaction observed in field tests and laboratory experiments.

A Study on the Lateral Flow in Polluted Soft Soils (오염된 연약지반의 측방유동에 관한 연구)

  • 안종필;박상범
    • The Journal of Engineering Geology
    • /
    • v.11 no.2
    • /
    • pp.175-190
    • /
    • 2001
  • This study investigates the existing theoretical backgrounds in order to examine the behavior of lateral flow according to the plasticity of soils when unsymmetrical surcharge is worked on polluted soft soils by comparing and analyzing the results measured through model tests. Model tests are canied out as follows soil tank, bearing frame and bearing plate are made. By increasing unsymmetrical surcharge to the ground soils with the consistent water content and with gradually increased polluted materials at intervals, the amounts of settlement, lateral displacement and upheaval were respectively observed. In conclusion, the value of critical surcharge was expressed as q$_{cr}$=2.78$_{cu}$ which was similar to those Tschebotarioff(q$_{cr}$=3.0$_{cu}$) and Meyerhof(q$_{cr}$=(B/2H+$\pi$/2)$_{cu}$) had been proposed. The value of ultimate capacity was expressed as q$_{ult}$=4.84$_{cu}$ which was similar to that of Prandtl. The lateral flow pressure is adeQuately calculated by the eQuation(P$_{max}$=K$_o$ r H) and the maximum value of lateral flow pressure is found near O.3H of layer thickness(H) and is higher to ground surface than the ones in composition pattern, Poulos distribution pattern and softclay soils (CL, CH) which is not polluted. The stability control method used in this research followed the management diagram of Tominaga.Hashimoto, Shibata.Sekiguchi, Matsuo.Kawamura who use the amounts of plasticity displacement by lateral flow. As a result, the ultimate capacity values in the diagram {S$_v$-(Y$_m$/S$_v$)} of Matsuo.Kawamura and in the diagram {(q/Y$_m$)-q} of Shibata. Sekiguchi were smaller than in the ones of load-settlement curve (q-S$_v$).

  • PDF

Foundation Analysis and Design Using CPT Results : Settlement Estimation of Shallow Foundation (CPT 결과를 이용한 기초해석 및 설계 : 얕은 기초의 침하량 산정)

  • 이준환;박동규
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.5-14
    • /
    • 2004
  • The settlement of foundations under working load conditions is an important design consideration. Well-designed foundations induce stress-strain states in the soil that are neither in the linear elastic range nor in the range usually associated with perfect plasticity. Thus, in order to accurately predict working settlements, analyses that are more realistic than simple elastic analyses are required. The settlements of footings in sand are often estimated based on the results of in-situ tests, particularly the standard penetration test (SPT) and the cone penetration test (CPT). In this paper, we analyze the load-settlement response of vertically loaded footings placed in sands using both the finite element method with a non-linear stress-strain model and the conventional elastic approach. Based on these analyses, we propose a procedure for the estimation of footing settlement in sands based on CPT results.

A study on the Consolidation Characteristic of Cohesive Soil by Plastic Index (소성지수에 따른 점성토의 압밀특성에 관한 연구)

  • Kim, Chan-Kee;Cho, Won-Beom;Lee, Seung-Lun;Choi, Woo-Jung
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.8
    • /
    • pp.99-109
    • /
    • 2008
  • The standard consolidation tests using the incremental loading technique test (IL) were performed on remolded normal consolidation and undisturbed clay samples to find out the effects of plastic index and loading period on consolidation in this study. The remolded samples used were prepared by mixing Gunsan-Samangum clay with bentonite so that they may have plasticity indexes of 15, 30, 45, and 60%, respectively. The undisturbed clay samples were collected from Inchon, Kwangyang, and Uoolsan. The samples were tested at the condition of 4 different loading periods (1, 2, 4, and 8 days). Settlement, coefficient of consolidation, compression index, secondary compression index, and pore water pressure characteristics were investigated from the plastic index and loading period aspects, and the compression index, coefficient of consolidation, and secondary compression index were formulated in terms of the plastic index and loading. To verify the applicability of proposed equations, the settlements obtained from Terzaghi's theory, modified Cam-Clay model (elasto-plastic model), and the Sekiguchi model (elasto-viscoplastic mode) were compared with the test results. The comparison indicates that the Sekiguchi model incorporating the secondary consolidation characteristic well predicts the results.

A Rheological Study on Creep Behavior of Clays (점토(粘土)의 Creep 거동(擧動)에 관한 유변학적(流變學的) 연구(研究))

  • Lee, Chong Kue;Chung, In Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.53-68
    • /
    • 1981
  • Most clays under sustained load exhibit time-dependent deformation because of creep movement of soil particles and many investigators have attempted to relate their findings to the creep behavior of natural ground and to the long-term stability of slopes. Since the creep behavior of clays may assume a variety of forms depending on such factors as soil plasticity, activity and water content, it is difficult and complicated to analyse the creep behavior of clays. Rheological models composed of linear springs in combination with linear or nonlinear dashpots and sliders, are generally used for the mathematical description of the time-dependent behavior of soils. Most rheological models, however, have been proposed to simulate the behavior of secondary compression for saturated clays and few definitive data exist that can evaluate the behavior of non-saturated clays under the action of sustained stress. The clays change gradually from a solid state through plastic state to a liquid state with increasing water content, therefore, the rheological models also change. On the other hand, creep is time-dependent, and also the effect of thixotropy is time-function. Consequently, there may be certain correlations between creep behavior and the effects of thixotropy in compacted clays. In addition, the states of clay depend on water content and hence the height of the specimen under drained conditions. Futhermore, based on present and past studies, because immediate elastic deformation occurs instantly after the pressure increment without time-delayed behavior, the factor representing immediate elastic deformations in the rheological model is necessary. The investigation described in this paper, based on rheological model, is designed to identify the immediate elastic deformations and the effects of thixotropy and height of clay specimens with varing water content and stress level on creep deformations. For these purposes, the uniaxial drain-type creep tests were performed. Test results and data for three compacted clays have shown that a linear top spring is needed to account for immediate elastic deformations in the rheological model, and at lower water content below the visco-plastic limit, the effects of thixotropy and height of clay specimens can be represented by the proposed rheological model not considering the effects. Therefore, the rheological model does not necessitate the other factors representing these effects. On the other hand, at water content higher than the visco-plastic limit, although the state behavior of clays is visco-plastic or viscous flow at the beginning of the test, the state behavior, in the case of the lower height sample, does not represent the same behavior during the process of the test, because of rapid drainage. In these cases, the rheological model does not coincide with the model in the case of the higher specimens.

  • PDF