• Title/Summary/Keyword: Soil nitrate nitrogen

Search Result 318, Processing Time 0.027 seconds

Impacts of Cover Crops on Early Growth, Nitrogen Uptake and Carbohydrate Composition of Pepper Plants (고추의 초기생장, 질소흡수 및 탄수화물 합성에 대한 녹비작물 시용효과)

  • Sung, Jwa-Kyung;Lee, Sang-Min;Lee, Yong-Hwan;Choi, Du-Hoi;Kim, Tae-Wan;Song, Beom-Heon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.1
    • /
    • pp.44-49
    • /
    • 2008
  • Sufficient inorganic nitrogen supply for crop growth is crucial for economically sustainable organic farming. The effects of an application of cover crop biomass on crop growth, nitrogen utilization and carbohydrate composition were investigated during early stage. Short-term changes in soil nitrogen after incorporating fresh hairy vetch and rye shoots were measured. The inorganic nitrogen from cover crops reached the peak at 15 ($NH_4-N$) and 24 ($NO_3-N$) days after incorporation, and then decreased rapidly. The highest concentration of soil nitrate showed at 27 days of incorporation in hairy vetch and at 18 days in rye, and three fold differences exhibited between two treatments. Crop growth under hairy vetch or rye incorporation significantly differed. At 20 DAT, dry matter production in NPK and hairy vetch was about two fold greater than that in rye. Difference in decomposing rates of hairy vetch and rye had also influence on nitrogen status in leaves and roots of pepper plants. Total nitrogen was greater in NPK and hairy vetch than in rye until 20 DAT, whereas inorganic nitrogen (nitrate and nitrite) concentration was higher in rye. Temporal changes in soluble sugars and starch in pepper plants among treatments were similar, although difference in the amount existed. It was suggested that hairy vetch as an alternative nitrogen source promoted crop growth and mineral utilization during early growth stage, whereas an obvious effect in rye was not found.

Effect of Soil Mineral Nutrients on Nitrogen Uptake of three Crops in Australian Brigalow Soil (호주(濠洲)의 Brigalow 토양(土壤)에서 무기성분(無機成分)이 세가지 작물(作物)의 질소흡수(窒素吸收)에 미치는 영향(影響))

  • Ahn, Yoon-Soo;Choi, Jung;Catchpoole, V.R.;Myers, R.J.K.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.27 no.3
    • /
    • pp.201-208
    • /
    • 1994
  • In order to study the effect of exsisting soil nutritional elements on the nitrogen uptake of sunflower, sorghum and black gram, pot experiment was carried out by using soils sampled from three different depths(0~20, 45~65, 90~110cm) of Brigalow soil in Australia. The results obtained were as follows : Dry matter and nitrogen uptake of corps were increased in the soil with higher nitrogen content. Chlorine uptakes of sunflower and sorghum were increased in the soil with higher nitrogen and lower chlorine contents, but that of black gram was done in the soil with higher contents of both elements. Ratios of nitrogen derived from applied fertilizer of three corps and fixed nitrogen of black gram were relatively low in the soil with higher content of soil nitrogen, but those derived from soil nitrogen were reverse. Recovery rates of applied nitrogen were relatively increased with higher cation uptakes of crops. Chlorine uptakes of sunflower and sorghum were positively correlated with each recovery of nitrogen, but that of black gram didn't show the trend. Recovery rate of applied nitrogen for black gram had significantly negative correlation with increase of soil chloride content.

  • PDF

Fate of Nitrogen Influenced by Circumstances of a Reclaimed Tidal Soils (간척지 토양환경 조건별 토양내 질소 동태와 영향 요소)

  • Han, Sang-Gyun;Kim, Hey-Jin;Song, Jin-Ah;Chung, Doug-young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.745-751
    • /
    • 2011
  • In most agricultural soils, ammonium ($NH_4^+$) from fertilizer is quickly converted to nitrate ($NO_3^-$) by the process of nitrification which is crucial to the efficiency of N fertilizers and their impact on the environment. However, nitrification studies have been studied extensively in agricultural soils, not in a newly reclaimed tidal soil which show saline-sodic and high pH. Therefore, understanding the fate of nitrogen species transformed from urea introduced into reclaimed tidal soil is important for nutrient management and environmental quality. This paper reviewed studies regarding to transformation and fate of nitrogen sources such as urea under the circumstances of a reclaimed tidal soils located in a western coastal area.

Relationship between Leaf Chlorophyll Reading Value and Soil N-supplying Capability for Tomato in Green House (시설재배 토마토 잎의 엽록소 측정치와 토양 질소공급능력의 상호관계)

  • Hong, Soon-Dal;Kim, Ki-In;Park, Hyo-Taek;Kang, Seong-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.2
    • /
    • pp.85-91
    • /
    • 2001
  • To find diagnosing method of nitrogen status in tomato plant for determining optimum application rate of side dress, chlorophyll reading values were measured by portable chlorophyll meter(SPAD 502, Minolta), and compared with nitrogen supplying capability of soils. Regression between dry weight, amount of nitrogen uptake, and chlorophyll reading at stalk positions of tomato grown on the condition of no fertilization were evaluated For 6 green house soils with different nitrate concentrations ranged from $55mg\;kg^{-1}$ to $306mg\;kg^{-1}$. The chlorophyll reading of tomato leave was significantly correlated with amount of nitrogen per unit area of leave suggesting that chlorophyll content is useful for nitrogen diagnosis of tomato plant. The chlorophyll reading showed peak at the 15th leaf of stalk position on the 45th days after transplanting and this suggested that below or near the 15th leaf and before or near the 45th days after transplanting is the critical stalk position and time for diagnosing nitrogen status of tomato by chlorophyll test. The chlorophyll reading at the 14th leaf on the 40th days after transplanting was significantly correlated with soil nitrate status, dry weight and amount of nitrogen uptake by tomato grown with no fertilization. From the above correlation, the chlorophyll reading value of 57.1 at the 14th leaf of tomato was estimated as the critical level for maximum dry weight and amount of nitrogen uptake by tomato grown with no fertilization. Consequently, chlorophyll reading of tomato leaves measured by portable chlorophyll meter was thought to be available as a rapid plant test for predicting the nitrogen supplying capability of green house soils.

  • PDF

Nitrogen and Phosphorus Runoff Loss during Summer Season in Sandy Loam Red Pepper Field as Affected by Different Surface Management Practices in Korea

  • Han, Kyung-Hwa;Ro, Hee-Myong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.6
    • /
    • pp.669-676
    • /
    • 2016
  • A field study was conducted to determine the runoff loss of N and P in small scale of red pepper field plots (10% slope), consisting of three different plots with black polyethylene vinyl mulching (mulching), ridge without mulching (ridge), and flat without ridge and mulching (flat). Composted manure and urea as a basal application were applied at rates of $20MT\;ha^{-1}$ and $93kg\;N\;ha^{-1}$, respectively. Urea at $189kg\;N\;ha^{-1}$ and fused phosphate at $67kg\;P_2O_5\;ha^{-1}$ were additionally applied on June 25 with different fertilization methods, broadcast application in flat plot and hole injection in ridge and mulching plots. Plant uptake of N and P was positively correlated with their respective concentrations in surface soil: mulching > ridge > flat plots. The runoff loss by soil erosion was higher in flat plot than ridge and mulching plot with contour line. Nitrate loss by the runoff water had no significant differences among three surface management practices, but the higher average value in ridge and mulching plots than flat plot. Especially, the flat plot had no phosphate loss during summer season. This is probably due to low labile P content in surface soil of flat plot. In the summation of soil and water loss, flat plot was higher in N and P loss than ridge and mulching plot with contour line. Nevertheless, the nitrate and phosphate loss by runoff water could be more important for non-point source management because the water could meet the river easier than eroded soil because of re-deposition around slope land.

Case Study of N Deficiency Symptom of Strawberry in the Soil Applied with Sea Deposit Compost (바다부유물질로 만든 퇴비를 시용한 토양에서 발생한 딸기의 질소결핍증 해결 사례연구)

  • Kim, Yoo-Hak;Kim, Myung-Sook;Kang, Seong-Soo;Yoon, Sung-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1023-1026
    • /
    • 2011
  • Nitrogen content in soil is a major factor for the crop growth. Ammonium nitrogen in soils is volatilized when soil pH is high. The growth and development problem of strawberry such as color of leaves turning into purple was found when soils were treated with the compost prepared from suspended solids of high pH from the sea. From in-situ analysis it was found that soil pH was 8.33 and nitrate, phosphorous, and potassium contents were relatively low. Nitric acid was added to adjust pH of irrigating water as 1.7, 1.9, and 2.3, then $KNO_3$ $0.25g\;L^{-1}$ and $KH_2PO_4$ $0.25g\;L^{-1}$ were added. It was resulted that soils with pH 1.7 produced the most developed strawberries. Strawberry was recovered by irrigation containing the same solution. From the results, the growth and development problem of the strawberry resulted from low nitrate absorption rate. It was concluded that the growth and development of strawberries were recovered by the reduced soil pH using nitric acid.

Enhancement of Denitrification Capacity of Pseudomonas sp. KY1 through the Optimization of C/N ratio of Liquid Molasses and Nitrate (액상 당밀과 질산성 질소의 C/N 비율에 따른 Pseudomonas sp. KY1의 탈질 능력 및 그 최적비율에 관한 연구)

  • Lee, Kyuyeon;Lee, Byung Sun;Shin, Doyun;Choi, Yongju;Nam, Kyoungphile
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.9
    • /
    • pp.654-659
    • /
    • 2013
  • This study was conducted to identify an optimal ratio of carbon to nitrogen (C/N ratio) for denitrification of nitrate using molasses as an external carbon source. A series of batch and column tests was conducted using an indigenous bacterium Pseudomonas sp. KY1 isolated from a nitrate-contaminated soil. For the initial nitrate-nitrogen concentration of 100 mg-N/L, batch test results indicated that C/N ratio of 3/1 was the optimal ratio with a relatively high pseudo-first-order reaction constant of $0.0263hr^{-1}$. At C/N ratio of 3/1, more than 80% of nitrate-nitrogen concentration of 100 mg-N/L was removed in 100 hrs. Results of column tests with a flow velocity of 0.3 mL/min also indicated that the C/N ratio of 3/1 was optimal for denitrification with minimizing remaining molasses concentrations. After 172 hrs of column operation (35 pore volumes) with an influent nitrate-nitrogen concentration of 100 mg-N/L, the effluent met the drinking water standard (i.e., 10 mg $NO_3$-N/L).

다중 환경추적자를 이용한 제주도 지하수 유동 및 수질 특성 분석

  • 고동찬;김용재
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.138-141
    • /
    • 2004
  • The environmental tracers tritium/helium-3 (3H/3He) and chlorofluorocarbons (CFCs) were investigated in ground water from Jeju Island, Korea, a basaltic volcanic island. The apparent 3H/3He and CFC-12 ages were in relatively good agreement in samples with low concentrations of terrigenic He. Ground water mixing was evaluated by comparing 3H and CFC-12 concentrations with mixing models, which distinguished old water with negligible 3H and CFC-12, young water with piston flow, and binary mixtures of the two end members. The ground water CFC-12 age is much older in water from wells completed in confined zones of the hydro-volcanic Seoguipo formation in coastal areas than in water from the basaltic aquifer. Comparison of major element concentrations in ground water with the CFC-12 age shows that nitrate contamination processes contribute more solutes in young water than are derived from water-rock interactions in non-contaminated old water. Chemical evolution of ground water resulting from silicate weathering in basaltic rocks reaches the zeolite-smectite phase boundary. The calcite saturation state of ground water increased with the CFC-12 apparent (piston flow) age. In agricultural areas, the temporal trend of nitrate concentration in ground water was consistent with the known history of chemical fertilizer use on Jeju Island, but the response of nitrate concentration in ground water to nitrogen inputs follows an approximate 10-year delay. Based on mass balance calculations, it was estimated that about 40% of the nitrogen applied by fertilizers reached the water table and contaminated ground water resources when the fertilizer use was at the highest level.

  • PDF

Contamination Source Assessment of Groundwater Nitrate in a Complex Terrain (복잡한 지형에서 발생하는 지하수의 질산태 질소 오염원 평가)

  • Han, Gwang-Hyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.1
    • /
    • pp.14-20
    • /
    • 2009
  • Classification of land uses and analysis of nitrogen isotope fractionation in groundwater nitrate were carried out to examine its contamination sources in Jeju province. ${\delta}^{15}N$ values of urea (hydrolyzed with urease), ammonium sulfate, compost, water from septic tank were -1.7, -5.8, +14.1, and +24.0‰, respectively. Urea, when it was directly distillated, showed -16.5‰. Based on these ${\delta}^{15}N$ values, sources of nitrate could be classified as originated from chemical fertilizers with ${\delta}^{15}N$ values below +5‰ and as from animal manure or municipal waste with ${\delta}^{15}N$ values over +10‰. Results of ${\delta}^{15}N$ analysis of 33 wells showed that most wells had the chemical fertilizers as their dominant contamination source. However, some wells were contaminated by other sources: animal wastes or municipal wastes. Some wells were also contaminated by the combined sources of nitrate. It was also demonstrated that ${\delta}^{15}N$ analysis could be a useful tool even in the case where no apparent contamination source is found.

Yield and Nitrogen Uptake of Corn in Corn after Soybean Cropping

  • Seo, Jong-Ho;Lee, Ho-Jin;Lee, Jin-Wook
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.4
    • /
    • pp.266-271
    • /
    • 2001
  • Soybean can produce high-N residue due to N-fixation, so soybean rotation may increase yield of subsequent corn and reduce N fertilizer on the corn fairly. To find out the contribution of nitrogen to subsequent corn following soybean cultivation, soil nitrate, corn yield, and nitrogen uptake were measured for three continuous corn cropping years after soybean rotation. Three N rates of 0, 80, and 160 kg/ha were applied to three continuous corn following soybean cropping. At 6-leaf stage, soil nitrate amount at the soil depth of 0-30cm ranged from 60 to 80 kgN/ha higher in the first corn cropping year than that in the second and third corn cropping years. Judging from corn N status such as SPAD value, N concentration of ear-leaf and stover at silking stage, N contribution of previous soybean to corn in the first corn year was N fertilizer of approximately 80 kg N/ha. Stover N uptake at silking stage increased from 47 to 52 kg N/ha at the 0, and 80 kg N/ha of N rates in the first corn cropping year compared with those in the second and third corn cropping years. Corn grain yield at the 0 kg N/ha of N rate was 6-7 ton/ha higher in the first corn cropping year than that in the second and third corn cropping years, respectively. When compared the first corn year following soybean cropping with the second and third corn cropping years, N uptake of grain and stover at harvest with low N rates such as 0 and 80 kg N/ha increased from 45 to 67kg N/ha, from 35 to 60 kg N/ha, respectively. N uptake of whole plant by soybean rotation increased from 93 to 118 kg N/ha in the first year compared with that in the second and third corn cropping years. However, the N contribution by soybean cropping was small in the second and third continuous corn cropping years. Therefore, it was concluded that the nitrogen fertilizer of 80-100 kg N/ha in the first corn cropping year could be saved by soybean rotation and annual alternative corn-soybean rotation could be the best rotation system.

  • PDF