• Title/Summary/Keyword: Soil nitrate nitrogen

Search Result 318, Processing Time 0.045 seconds

Estimating soils properties using NIRS to assess amendments in intensive horticultural production

  • Pena, Francisco;Gallardo, Natalia;Campillo, Carmen Del;Garrido, Ana;Cabanas, Victor Fernandez;Delgado, Antonio
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1615-1615
    • /
    • 2001
  • During the past ten years, Near Infrared Spectroscopy has been successfully applied to the analysis of a great variety of agriculture products. Previous works (Morra et al., 1991; Salgo et al., 1998) have shown the potential of this technology for soil analysis, estimating different parameters just with one single scan. The main advantages of NIR applications in soils are the speed of response, allowing the increase of the number of samples analysed to define a particular soil, and the instantaneous elaboration of recommendations for fertilization and soil amendment. Another advantage is to avoid the use of chemical reagents at all, being an environmentally safe technique. In this paper, we have studied a set of 129 soil samples selected from representative glasshouse soils from Southern Spain. The samples were dried, milled, and sieved to pass a 2 mm sieve and then analysed for organic carbon, total nitrogen, inorganic nitrogen (nitrate ammonium), hygroscopic humidity, pH and electrical conductivity in the 1:1 extract. NIR spectra of all samples were obtained in reflectance mode using a Foss NIR Systems 6500 spectrophotometer equipped with a spinning module. Calibration equations were developed for seven analytical parameters (ph, Total nitrogen, organic nitrogen, organic carbon, C/N ratio and Electric Conductivity). Preliminary results show good correlation coefficients and standard errors of cross validation in equations obtained for Organic Carbon, Organic Nitrogen, Total Nitrogen and C/N ratio. Calibrations for nitrates and nitrites, ammonia and electric conductivity were not acceptable. Calibration obtained for pH had an acceptable SECV, but the determination coefficient was found very poor probably due to the reduced range in reference values. Since the estimation of Organic Carbon and C/N ratio are acceptable NIIRS could be used as a fast method to assess the necessity of organic amendments in soils from Mediterranean regions where the low level of organic matter in soils constitutes an important agronomic problem. Furthermore, the possibility of a single and fast estimation of Total Nitrogen (tedious determination by modifications of the Kjeldahl procedure) could provide and interesting data to use in the estimation of nitrogen fertilizer rates by means of nitrogen balances.

  • PDF

A Study on the Vegetation Ecological Characteristics and Management of Ansan Reclaimed Wetlands (안산 간척 습지의 식생 생태적 특성 및 관리에 관한 연구)

  • Kim, Kee-Dae
    • Korean Journal of Environment and Ecology
    • /
    • v.21 no.4
    • /
    • pp.318-335
    • /
    • 2007
  • Floral study and present vegetation survey were conducted at a representative reclaimed wetland located behind the Rural Research Institute at Ansan, Gyeonggi-do. The importance values were calculated from the ground cover and frequency of recorded species within quadrats and detrended canonical correspondence analysis was conducted using environment variables, such as total nitrogen, electric conductivity, available phosphate, nitrate nitrogen and the distance from the inner roads. And basal areas for the trees encroaching on the reclaimed wetland were estimated to take a look at the on-going situation about the succession routes on land. As a result, 46 families and 158 species of plants were recorded and Pragmites communis was found to be a dominant species as the present vegetation. The ordination analysis results showed that species distribution was purposely explained by total nitrogen in soil and its content in nitrate nitrogen. The invasion of Robinia pseudoacacia and Pinus rigida whose basal areas were $22.3m^2$ and $1.6m^2$ respectively, into the interior areas of the reclaimed wetland was found to cause a disturbance making some parts of the wetland into land. The zoning program using water level control and migratory roads is becoming a contributing factor in destroying a wetland, so it's suggested that some adjustments should be needed to take care of it.

Early Growth Response and Nutrient Absorption Characteristics of Willows (Salix sp.) Treated with Nitrogen Source (질소원 처리에 따른 버드나무류의 생육초기 반응과 양분 흡수 특성)

  • Chae, Seung-Min;Kim, Mi-Ja;Kim, Sun-Young;Lee, Chang-Heon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.23 no.3
    • /
    • pp.63-79
    • /
    • 2020
  • The present study was to investigate the growth response and nutrient absorption in three willow species (Salix gracilistyla, S. koreensis and S. chaenomeloides) treated with nitrogen source (NH4+:NO3- rate; 200:0, 150:50, 100:100, 50:150, 200:0) for a period of 90days. The height, dry weight and chlorophyll contents of three species of willows were found to be highest at 50:150 (NH4+:NO3-) treatment. NO3--N was more effective than NH4+-N in the early growth of three species of willows. The increase in percentage of NO3--N handling, T-N, NO3--N in plant tissue increased. The analysis of C, N and mineral content in various parts revealed that the amounts of C, N, K, Ca and Mg were higher in leaves than those in the stems and the roots. However, the amount of NO3--N and P were higher in roots than those in the leaves and the stems. Salix koreensis was excellent, followed by S. chaenomeloides and S. gracilistyla in absorption of nitrate nitrogen. Higher percentage of NO3--N, the amounts of T-N, NO3--N, P2O5, K, Na, Ca, and pH in soil were decreased.

Genotypical Variation in Nitrate Accumulation of Lettuce and Spinach (상추와 시금치의 품종별 질산태 질소 축적 차이)

  • Chung, Jong-Bae;Lee, Yong-Woo;Choi, Hee-Youl;Park, Yong;Cho, Moon-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.1
    • /
    • pp.38-44
    • /
    • 2005
  • In addition to the variation in nitrate accumulation of vegetables due to environmental conditions, there is also a distinct genetic variation. The variation of nitrate accumulation in some cultivars of lettuce and spinach commonly cultivated in Korea was investigated. Ten cultivars for both lettuce and spinach were grown in plastic containers filled with a 1:1 mixture of perlite and vermiculite with application of Hoagland No. 2 nutrient solution of high nitrate content (17.3 mM N) in a greenhouse condition. Plants were harvested four weeks after transplanting four-leaf stage seedlings. Plant growth was measured by fresh and dry matter of shoot, and contents of nitrate and other inorganic ions and organic solutes including sugar, amino acids and organic acids were measured. Large and significant genotypical variations in the nitrate content of the plants were found for both lettuce and spinach, and high negative correlations between nitrate content and fresh or dry weight were found in lettuce and spinach. Variation in nitrate accumulation of lettuce and spinach cultivars was not directly related to the differences in contents of organic and inorganic solutes, and this result indicates that photosynthesis and osmotic regulation are not directly related with the nitrate accumulation. Considering the correlations between nitrate content and plant growth of this study, it can be simply suggested that different cultivars of lettuce and spinach have their own inherited growth and physiological characteristics and also optimum nitrogen level required for the growth. Therefore when available nitrogen in root media is higher than the optimum level required for the inherited growth potential, some of the excess nitrate supplied can be accumulated in plants.

Effects of Horse Manure Compost Application Level on the Productivity of Italian Ryegrass and Soil Nitrate Leaching (마분 퇴비 시용 수준이 이탈리안 라이그라스 생산성과 용탈수 성분에 미치는 영향)

  • Yoo, Ji-Hyun;Park, Nam-Geon;Woo, Jae-Hoon;Ahn, Hee-Kwon;Yang, Byoung-Chul
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.40 no.2
    • /
    • pp.117-122
    • /
    • 2020
  • This study was conducted to figure out the productivity of Italian ryegrass(IRG) and leaching water characteristics based on horse manure compost level in Jeju. This study was conducted for about six months. Six treatments were established : non-fertilizer(NF), chemical fertilizer 100%(CF), horse manure compost 50% and chemical fertilizer 50% combination(Combination), horse manure compost with 50% of nitrogen (50%), 100% of nitrogen(100%), 150% of nitrogen(150%). The highest amount of dry matter yield of IRG was revealed in CF(11,965±564 kg/ha), and both 150% and Combination were second(p<0.05). Nitrate leaching tended to increase until the third analysis and then decreased. There were not significantly differences among mean nitrate concentrations. The findings of the study suggest that horse manure compost with 50% of nitrogen be applied for IRG as basal fertilization and then 50% of chemical fertilizer be applied as top fertilization.

Physiological and Ecological Characteristics of Indigenous Soybean Rhizobia Distributed in Korea -IV. Dissimilartory Nitrate Reduction and Protein Characteristics of Indigenous Soybean Rhizobia (우리나라 토착대두근류균(土着大豆根瘤菌)의 분포상태(分布狀態)와 생리(生理) 및 생태학적(生態學的) 특성(特性) -제(第)IV보(報) 토착대두근류균(土着大豆根瘤菌)의 질산환원(窒酸還元) 및 균체단백질(菌體蛋白質) 특성(特性))

  • Ryu, Jin-Chang;Suh, Jang-Sun;Lee, Ju-Yeong;Lee, Sang-Kyu;Cho, Moo-Je
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.3
    • /
    • pp.275-283
    • /
    • 1987
  • In order to find out the effectiveness of nitrogen fixation in rhizobia-legume symbiotic relationship, ecological and physiological characteristics of indigenous rhizobia distributed in Korean soils, that is, dissimilatory nitrate reduction patterns of indigenous soybean rhizobia isolated from four different soils, and differences in one-and two-dimensional polyacrylamide gel electrophoretic pattern of proteins among the each subgroups of Bradyrhizobium japonicum and Rhizobium fredii, were investigated. The results were summarized as follows: 1. The indigenous soybean rhizobia isolated from four different soils could be classified into 4 groups depending on growth rate and dissimilatory nitrate reduction pattern, that is, $S_1$ (slow-grower; Bradyrhizobium japonicum and nitrate denitrifier), $S_2$ (slow-grower; Bradyrhizobium japonicum and nitrate respirer), $F_1$ (fast-grower; Rhizobium fredii and denitrifier), and $F_2$ (fast-grower; Rhizobium fredii and nitrate respirer). 2. The population ratio of fast- to slow-growing R. japonicum was 39% to 61%, and the ratio of denitrifier to nitrate respirer was 31% to 69% and 89% to 11% in fast and slow-grower, respectively. Some differences were observed between fast- and slow-growing R. japonicum but no significant difference was observed between denitrifier and nitrate respirer within same growth type by one and two dimensional SDS-polyacrylamide gel electrophoretic patterns.

  • PDF

Nitrogen Use and Yield of Silage Corn as Affected by Hairy Vetch(Vicia villosa Roth) Soil-incorporated at Different Time in Spring

  • Seo, Jong-Ho;Lee, Ho-Jin;Hur, Il-Bong;Kim, Si-Ju;Kim, Chung-Guk;Jo, Hyeon-Suk;Lee, Jung-Sam
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.45 no.4
    • /
    • pp.272-275
    • /
    • 2000
  • Winter green manure crops including legume increase grain yield of subsequent crop and substitute N fertilizer requirement with organic-No Hairy vetch grows vigorously and can provide N-rich green manure for corn with its soil incorporation after wintering. But, grain yield of corn as succeeding crop would be reduced if its planting time is delayed until late spring. This experiment was carried out to find the proper incorporation time of hairy vetch green manure and planting time of subsequent corn in cropping system with winter hairy vetch(green manure)-summer corn. Hairy vetch was incorporated into soil at a ten-day interval between April 10 and May 10 and corn was planted at 5 days after each hairy vetch incorporation. Soil nitrate concentration on April 10 and 20 in hairy vetch plot was slightly lower than that at winter fallow. Above-ground dry matter and organic-N of hairy vetch increased linearly with delayed hairy vetch incorporation time from April 10 to May 10. Average dry matter and organic-N produced by hairy vetch were 5.7 ton/ha and 248 kgN/ha, respectively. Corn growth and yield decreased as delayed corn planting time after May in spite of increasing dry matter and N-yield of hairy vetch. Nitrogen concentration of corn grain, stalk and whole plant at harvest were the highest in May 5 planting, but total N-uptake of May 5 planting were not different from that of April 25 planting because of lower grain yield. It was concluded that the proper incorporation time of hairy vetch and corn planting time were April 20 and April 25, respectively, because grain yield was the highest and corn could use hairy vetch-N effectively to produce dry matter.

  • PDF

Environmental Impacts of Food Waste Compost Application on Paddy Soil (음식물쓰레기 퇴비 시용이 논토양에 미치는 영향)

  • So, Kyu-Ho;Seong, Ki-Seog;Seo, Myung-Chul;Hong, Seung-Gil
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.1
    • /
    • pp.85-94
    • /
    • 2007
  • To determine the influence of food waste compost (FWC) application on paddy soil, FWC was applied to the paddy soil and then compared with farmer's practice as to the effects on rice and soil environment. Initially, pig manure compost (PMC) had high content of phosphorus ($15g\;kg^{-1}$) and potassium ($23g\;kg^{-1}$), while FWC had high content of total nitrogen ($13g\;kg^{-1}$) and salinity ($18.5g\;kg^{-1}$). Comparison was also made between chemical fertilizer and FWC use as a trial in the paddy field under the clay loam and sandy loam soil. In the panicle formation stage, chemical fertilizer application was proper in clay loam while PMC application was proper in sandy loam. However, chemical fertilizer produced higher yield compared to compost treatment, both on clay loam and sandy loam with 20~25% and 17~19%, respectively. The lower yield in sandy loam maybe due to slow mineralization of compost such that the crop did not effectively use it. Organic matter content in paddy soil after experiment was higher in FWC and PMC plots compared to that in chemical fertilizer plots. But the other soil properties were comparable. Therefore, the FWC compost had little effect on soil when it use as a trial in paddy field. Likewise, after the application of FWC as a trial, analysis of nitrate nitrogen and ammonium nitrogen in the surface water and 60 cm depth of paddy soil water nine days after planting was done. Results revealed that concentration of ammonium nitrogen was similar to irrigation water while nitrate nitrogen concentration was not detected, and hence did not contribute to water pollution. It is concluded that the application of FWC in the paddy field had not affected on environmental pollution in the paddy field. But its use as compost during rice culture reduced yield quantity. Such study should include selection of compost material, amount and method of compost application.

Nutrient Leaching and Crop Uptake in Weighing Lysimeter Planted with Soybean as Affected by Water Management (중량식 라이시미터에서 콩 재배시 물관리 방법에 의한 양분의 용탈과 작물 흡수)

  • Lee, Ye-Jin;Han, Kyung-Hwa;Lee, Seul-Bi;Sung, Jwa-Kyung;Song, Yo-Sung;Lee, Deog-Bae
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.3
    • /
    • pp.147-153
    • /
    • 2017
  • BACKGROUND: Soil water content strongly depends on weather condition and irrigation, and it could influence on crop nutrient use efficiency. This study was performed to assess nutrient uptake of soybean by soil water condition. METHODS AND RESULTS: In this study, nutrient leaching and crop uptake as affacted by water management practice was investigated using weighing lysimeter which is located in National institute of agricultural science, Wanju, Jeonbuk province from June 2015 to October 2016. Water supply for soybean (cv. Daewon) was managed with irrigation and rainfall. Nitrate leaching was greatest in the rainfall treatment at early July 2016. Yield of soybean in the rainfall treatment was only 25% compared to the irrigation due to the drought at flowering and podding period. The uptake of nitrogen was considerably reduced by drought whereas the uptake of phosphorus and potassium was less affected by drought. CONCLUSION: It was proven that nitrogen loss and uptake were dependent on soil water condition. Therefore, irrigation water management to maintain available soil moisture capacity is critical to nitrogen uptake and yield of soybean.

Estimation of Nitrate Leaching Rates for a Small Rural Watershed Using a Distributed Watershed Model (분포형 유역모델을 이용한 농촌지역 소유역의 질산성 질소 지하침출량 평가)

  • Park, Min-Hye;Park, Sunhwa;Kim, Hyun-Koo;Hwang, Jong-Yeon;Kim, Tae-seung;Chung, Hyen Mi;Cho, Hong-Lae;Lee, Taehwan;Koo, Bhon K.;Park, Yun Hee
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.6
    • /
    • pp.661-669
    • /
    • 2017
  • A distributed watershed model CAMEL (Chemicals, Agricultural Management and Erosion Losses) was applied to a small rural watershed where intensive livestock farming sites are located to estimate nitrate leaching rates from soil to groundwater. The model was calibrated against the stream flows, and T-N and $NO_3-N$ concentrations were observed at the watershed outlet for three rainfall events in 2014. The simulation results showed good agreement with the observed stream flows ($R^2=0.67{\sim}0.93$), T-N concentrations ($R^2=0.40{\sim}0.58$) and $NO_3-N$ concentrations ($R^2=0.43{\sim}0.65$). The estimated annual nitrate leaching rate of the watershed was 33.0 kg N/ha/yr. The contributing proportions of individual activities to the total nitrate leaching rate of the watershed were estimated for livestock farming, applications of chemical fertilizer, and manure. The simulation results showed that the highest contributor to the nitrate leaching rate of the watershed was chemical fertilizer applications. The simulation period was for one year only, however, and results may vary depending on different conditions. Gathering input data over a longer period of time and monitoring data for calibration is needed. When this has been accomplished, it is expected that this model can be applied to small rural watersheds for evaluating temporal and spatial variations of nitrogen transformations and transport processes.