• Title/Summary/Keyword: Soil nitrate nitrogen

Search Result 318, Processing Time 0.036 seconds

Evaluation of Ammonia Removal Mechanisms and Efficiencies Through Batch Experiments (배치 실험을 이용한 암모니아 제거 기작 및 효율 평가)

  • Jang, Jieun;Kang, Jiyoung;Kim, Hye Won;Shin, Kyu Jin;Jeen, Sung-Wook
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.6
    • /
    • pp.37-46
    • /
    • 2022
  • As the amount of livestock wastewater increases, ammonia contamination in surface water and groundwater is also increasing, and its treatment is urgently needed. In this study, indigenous soil bacteria was utilized for ammonia removal in artificial wastewater and associated removal mechanisms and efficiencies were evaluated. Two batch reactors were configurated to contain natural soil and artificial wastewater at 1:10 mass ratio, and incubated for 84 and 168 hours, respectively. The results showed that ammonia was completely removed within 48 and 72 hours in the first and second reactors, respectively. There were no significant changes in ammonia concentrations in the control groups without soil. Nitrate was formed in the reactors, indicating that the main removal mechanism of ammonia was nitrification by nitrifying bacteria. Nitrate was further converted to nitrogen gas by denitrification in the anaerobic environment, which was caused by consumption of oxygen during the nitrification process.

Effects of Soil Moisture, Seasons, Harvesting Period and Fertilizer Application on the Nitrate Content of Radish(Raphanus sativus L. var. niger(Mill.) S. Kerner) (토양수분(土壤水分), 재배시기(栽培時期), 수확기(收穫期) 및 시비(施肥)가 무우의 질산염함량(含量)에 미치는 영향)

  • Park, Kuen-Woo;Fritz, D.
    • Korean Journal of Environmental Agriculture
    • /
    • v.1 no.1
    • /
    • pp.59-64
    • /
    • 1982
  • Studies on the effect of soil moisture, different seasons, harvesting periods and nitrogen application on the nitrate content of radish(Raphanus sativus L. var. niger(Mill.) S. Kerner) were carried out in pot and green house. The results are as follows; The low level of soil moisture leads to an increased nitrate accumulation in radish root. The nitrate content was found to be higher in spring crops and lower in summer ones. It was decreased during harvesting period. The application of nitrogen fertilizer increased the nitrate content in radish root. We found the highest content in petioles with lesser content in roots and leaf blades in that order. The multiple regression analysis and the nutritional value of nitrate content in radish were discussed.

  • PDF

Simultaneous Removal of Nitrate and Trichloroethylene by Zero Valent Iron and Peat (영가철과 피트를 이용한 질산성질소와 트리클로로에틸렌의 제거)

  • Min, Jee-Eun;Kim, Mee-Jeong;Park, Jae-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.10
    • /
    • pp.1074-1081
    • /
    • 2006
  • As common pollutants in surface and groundwater, nitrate nitrogen($NO_3-N$) and trichloroethylene(TCE) can be chemically and biologically reduced by zero valent iron(ZVI) and peat soil. In batch microcosm experiments, chemical reduction of TCE and nitrate was supported by hydrogen from ZVI. For biological degradation of TCE and denitrification peat soil was introduced. ZVI reduced TCE, while peat provided TCE sorption site and microbes performing biological degradation. Nitrate reduction was also achieved by hydrogen from ZVI. In addition, indirect evidence of denitrification was observed. More reduction of TCE and nitrate was achieved by ZVI+peat treatment however nitrated reduction was hindered in the presence of TCE in the system due to the competition for hydrogen. TCE reduction mechanism was more dependent on ZVI, while nitrate was peat-dependent. Hydrogen and methane concentration showed that peat had various anaerobic denitryfing and halorespiring bacteria.

Characterization of Nitrate Uptake Mediated by Soil Bacterial Strains

  • Ahn, Hae-Jin;Cho, Kwang-Hyun;Kim, Young-Kee
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2002.06b
    • /
    • pp.42-42
    • /
    • 2002
  • Salt accumulation in agricultural soils reduces the growth and productivity of crops. Although scientists have been studied the impacts of salinity on plants, the physiological mechanism of adaptation to salinity has not been well understood. Practically, salinity in irrigated soil of green and glass houses keeps increasing in Korea by the massive application of nitrogen fertilizer.(omitted)

  • PDF

Nitrogen and Phosphorus Removal from Plating Wastewater Using the Soil Reactor (토양 반응조를 이용한 도금폐수 중의 질소 및 인 제거)

  • Cheong, Kyung-Hoon;Choi, Hyung-Il;Shin, Dae-Yun;Im, Byung-Gab;Jeon, Gee-Seok
    • Journal of Environmental Science International
    • /
    • v.18 no.2
    • /
    • pp.205-213
    • /
    • 2009
  • A laboratory experiment was conducted to investigate nitrogen removal from plating wastewater by a soil reactor. A combination of soil, waste oyster shell and activated sludge were used as a loading media in a soil reactor. The addition of 20% waste oyster shell and activated sludge to the soil accelerated nitrification (88.6% ${NH_4}^{+}-N$ removal efficiency) and denitrification (84.3% ${NO_3}^{-}-N$ removal) in the soil reactor, respectively. In continuous removal, the influent ${NH_4}^{+}-N$ was mostly converted to nitrate nitrogen in the nitrification soil reactor and only a small amount of ${NH_4}^{+}-N$ was found in the effluent. When methanol was added as a carbon source to the denitrification soil reactor, the average removal efficiency of ${NO_3}^{-}-N$ significantly increased. The ${NO_3}^{-}-N$ removal by methanol addition in the denitrification soil reactor was mainly due to denitrification. The phosphorus was removed by the waste oyster shell media in the nitrification soil reactor. Moreover, the phosphorus removal in the denitrification soil reactor was achieved by synthesis of bacteria and the denitrification under anaerobic conditions. The approximate number of nitrifiers and denitrifiers was $3.3{\times}10^5\;MPN/g$ soil at a depth of $1{\sim}10\;cm$ and $3.3{\times}10^6\;MPN/g$ soil at a depth of $10{\sim}20\;cm$, respectively, in the soil reactor mixed with a waste oyster shell media and activated sludge.

On-Line Real Time Soil Sensor

  • Shibusawa S.
    • Agricultural and Biosystems Engineering
    • /
    • v.4 no.2
    • /
    • pp.45-49
    • /
    • 2003
  • Achievements in the real-time soil spectro-photometer are: an improved soil penetrator to ensure a uniform soil surface under high speed conditions, real-time collecting of underground soil reflectance, getting underground soil color images, use of a RTK-GPS, and all units are arranged for compactness. With the soil spectrophotometer, field experiments were conducted in a 0.5 ha paddy field. With the original reflectance, averaging and multiple scatter correction, Kubelka-Munk (KM) transformation as soil absorption, its 1st and 2nd derivatives were calculated. When the spectra was highly correlated with the soil parameters, stepwise regression analysis was conducted. Results include the best prediction models for moisture, soil organic matter (SOM), nitrate nitrogen ($NO_3-N$), pH and electric conductivity (EC), and soil maps obtained by block kriging analysis.

  • PDF

Bioremediation by Denitrification in the Saturated Zone : Mathematical Model and Experiment

  • Lee Eun-Jung;Lee Kang-Kun;Kim Young;Ha Cheol-Yun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.393-396
    • /
    • 2005
  • The reactive transport model on the biologically mediated sequential nitrate transformation and its subsequent transport was developed and tested. This model was coded as a reaction module within the RT3D framework (Clement, 1997). Transports of the reasonable six mobile solutes (dissolved organic carbon, $O_2,\;{NO_3}^-,\;{NO_2}^-,\;N_2O,\;N_2$) and two immobile microbes were simulated. The simulation results gave a reasonable match with supposed transport pattern. For the next step, the developed model will be validated against experimental data.

  • PDF

Characteristics, Stability and Reisolation of nit Mutant of Fusarium oxysporum from Strawberry (딸기로부터 분리된 Fusarium oxysporum nit 변이주의 특성과 안정성 및 재분리)

  • 신동범;홍연규;조재민
    • Korean Journal Plant Pathology
    • /
    • v.14 no.6
    • /
    • pp.583-588
    • /
    • 1998
  • This study was conducted to investigate the potential of nitrate-nonutilizing mutants (nit mutants) in ecological studies of Fusarium disease of strawberry. Nit mutants of Fusarium oxysporum from strawberry were easily formed on chlorate-containing media. Nit mutants were assigned to three phenotypic classes, nit1, nit3, and NitM, on the basis of their growth on media containing one of the following five different nitrogen sources ; nitrate, nitrite, hypoxanthine, ammonium and uric acid. Frequency of nit mutation and proportion of three phenotypes of nit mutants depended on the isolate. Mutation rate was 45.6% and ranged from 15.0% to 95.0%. The frequency of nit1 mutants was higher than that of nit3 or NitM. The complementary reaction between nit1 and NitM was higher than that of other combination. There has been no complementary response observed between nit3 and nit3. The nit mutants showed similar growth pattern as the that of wild type isolate on potato sucrose agar and potato sucrose liquid media. Most of the mutants retained pathogenicity, and maintained their phenotypes even after two year preservation through subculture on slanted PSA at room temperature. Nit mutants were selctively isolated from infested soil and infected plants on the selective medium (MMCPA) containing potassium chlorate with their original phenotypes, while naturally occurring isolates of Fusarium oxysporum were not grow on the medium. On the contrary, nit mutants showed very slight growth on the medium (MMPA) containing nitrate as a sole nitrogen source, and therefore could be distinguished from wild type isolate.

  • PDF

Optimal Application Rate of Mixed Expeller Cake and Rice Straw and Impacts on Physical Properties of Soil in Organic Cultivation of Tomato (토마토 유기재배에서 혼합유박과 볏짚의 적정시용량 및 토양 물리성에 미치는 영향)

  • Lim, Tae-Jun;Park, Jin-Myeon;Lee, Seong-Eun;Jung, Hyun-Cheol;Jeon, Sang-Ho;Hong, Soon-Dal
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.2
    • /
    • pp.105-110
    • /
    • 2011
  • BACKGROUND: In this study, 5 different treatments such as non-treatment, mixed expeller cake 1.0 N (standard nitrogen fertilizer), rice straw, rice straw+mixed expeller cake 0.5 N, rice straw+mixed expeller cake 1.0 N were performed over 4 cropping seasons over 2 years in order to identify the optimal application rate of mixture of rice straw and mixed expeller cake, organic source in organic cultivation of tomatoes. METHODS AND RESULTS: There was no difference in all treatments in case of 200 mg/kg in the nitrate nitrogen content in soil prior to the first cropping season test under the criteria for nitrogen nutrient based on yield of crops, cultivation without fertilizers seems possible. But in the second cropping season, no treatment and rice straw showed the reduction of yield and in the third cropping season, rice-straw+mixed expeller cake 0.5 N treatment showed the significant difference. The content of nitrate nitrogen in soil prior to cropping seasons was evaluated in 160 mg/kg and standard fertilization such as mixed expeller cake, source of nitrogen, are needed due to the deficiency of nitrogen. In terms of application of organic resources, rice straw showed the effects of improvements on physical properties of soil such as bulk density, cation exchange capacity and humus contents, but the mixed expeller cake did not show any significant differences in improvements on physical properties of soil. CONCLUSION(s): Fertilizer management in organic cultivation of tomatoes is thought to produce the reliable quantity of crops as well as keep the high quality of soils by using the optimal application rate of mixed expeller cake according to the contents of nitrate nitrogen in soil and rice straw which improves the physical properties of soil.

현장 Single Well Push-Pull 실험을 통한 탈질산화반응 각 단계의 반응속도 측정

  • Yeong, Kim;Jin Hun, Kim;Bong Ho, Son;Seong Uk, Eo
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.77-82
    • /
    • 2004
  • Quantifying rates of microbial processes under subsurface conditions is difficult, and is most commonly approximated by laboratory studies using aquifer materials. In this study a single-well, 'push-pull' test method is adapted for the in situ determination of denitrification rates in groundwater aquifers. The rates of stepwise reduction of nitrate to nitrite, nitrous oxide, and molecular nitrogen were determined by performing a series of push-pull tests at an experimental well field of Korea University. A single Transport Test, one Biostimulation Test, and four Activity Tests were conducted for this study. Transport tests are conducted to evaluate the mobility of solutes used in subsequent tests. These included bromide (a conservative tracer), fumarate (a carbon and/or source), and nitrate (an electron acceptor). At this site, extraction phase breakthrough curves for all solutes were similar, indicating apparent conservative transport of the solutes prior to biostimulation. Biostimulation tests were conducted to stimulate the activity of indigenous heterotrophic denitrifyinc microorganisms. Biostimulation was detected by the simultaneous production of carbon dioxide and nitrite after each injection. Activity tests were conducted to quantify rates of nitrate, nitrite, and nitrous oxide reduction. Estimated zero-order degradation rates decreased in the order nitrate '||'&'||'gt; nitrite '||'&'||'gt; nitrous oxide. The series of push-pull tests developed and field tested in this study should prove useful for conducting rapid, low-cost feasibi1ity assessments for in situ denitrification in nitrate-contaminated aquifers.

  • PDF