• Title/Summary/Keyword: Soil neutralization

Search Result 76, Processing Time 0.028 seconds

Preparation and Super-Water-Absorbency of Poly(sodium acrylate-co-acrylamide-co-2-hydroxyethyl acrylate) (Poly(sodium acrylate-co-acrylamide-co-2-hydroxyethyl acrylate)의 제조와 고흡수 특성)

  • Zhang Yuhong;Deng Min;He Peixin
    • Polymer(Korea)
    • /
    • v.30 no.4
    • /
    • pp.286-292
    • /
    • 2006
  • Super water-absorbent resins were prepared by inverse suspension copolymerization of sodium acrylate, acrylamide and 2-hydroxyethyl acrylate using N, N'-methylene-bis-acrylamide as cross-linker. For the suspension copolymerization, monohexadecyl phosphate was employed as the dispersing agent, cyclohexane as the dispersing medium and potassium persulfate as the initiator. The dependence of water-absorption capacity on the amount of crosslinking agent, oil/water ratio, degree of neutralization and the composition of the copolymer were systematically investigated. Furthermore, the swelling kinetics of the super water-absorbent copolymer was carried out. The absorption of the resins is more than 1800 g/g for deionized water and 100 g/g for 0.9% NaCl solution, respectively. The copolymers showed an increased salt resistance and enhanced water retention of soil.

Evaluation of Acid Rain through the Scavenging Theory and Application of Trajectory Model (세정이론을 통한 산성비의 평가와 발원지 추적)

  • Kim, Jeong-Soo;Kang, In-Goo;Chang, Sung-Kee
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.8 no.2
    • /
    • pp.121-127
    • /
    • 1992
  • This study was carried out to investigate the features of air pollutants in rainwater and trace their transported trajectories from other countries. Chemical analysis data of rainwater and suspended particulates collected at Seoul, Kanghwa, and Taean for three years were used to evaluate the effects of long-range transport of air pollutants. Scavenging theory on washout and rainout effect during a rainy period was applied to estimate whether pollutants in the precipitation were long-range transported or not. On the other hand, precipitation weighted surface wind were evaluated to analyze the effect from local sources on atmospheric concentrations. As a result, contribution of air pollutants caused by anthropogenic sources in the precipitation which was identified to be long range transported was confirmed significantly high and trajectory of these pollutants was to be equivalent to 850mb isobar. Although concentration of acidifying components increased in the precipitation, neutralization by alkaline soil components such as $Ca^{2+}$ and $Mg^{2+}$ was conspicuous especially during Yellow-sand period.

  • PDF

Residual Life Assessment on Cast Iron Pipes of Water Distribution System (상수도관로중 주철관종의 잔존수명 평가에 관한 연구)

  • Lee, Hyun-Dong;Bae, Chul-Ho;Hong, Seong-Ho;Hwang, Jae-Woon;Kwak, Phill-Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.3
    • /
    • pp.206-214
    • /
    • 2004
  • Residual wall thicknesses, corrosion rates, and residual life of thirty four samples of cast iron pipes(CIPs) and ductile cast iron pipes(DCIPs) collected from water mains of B city were studied to estimate their remaining service life or optimum time of rehabilitation. The internal maximum corrosion depths of samples measured using a dial gauge after shot blasting were twice higher than the external in most cases. Therefore corrosion of water pipes was much more affected by internal water quality than soil. Residual wall thicknesses of DCIPs were higher than those of CIPs. That reason was thought to be that DCIPs have been protected from internal corrosion by lining cement mortar. Residual life calculated by maximum corrosion rate was ranged up to 44 years with 12.40 years average. Since most CIPs were much deteriorated, rehabilitation plan should be established soon in B city. Residual life of DCIP was 33.52 years average. When cement mortar lining is used up by neutralization of DCIPs. DCIP also should be rehabilitated.

Remediation of Acid Mine Drainage from an Abandoned Coal Mine Using Steel Mill Slag, Cow Manure and Limestone (제강슬래그, 우분 및 석회석을 활용한 폐 석탄광의 산성광산배수 처리)

  • Jung Myung-Chae
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.3
    • /
    • pp.16-23
    • /
    • 2005
  • In order to remediate acid mine drainage (AMD) from the Jeongam coal mine, steel mill slag, cow manure and limestone were used. As a result of batch test, the proper amounts for treating 1 L of acid mine water from the mine were determined as 15 g of steel mill slag, 15 g of cow manure and 500 g of limestone. After feasibility test, remediation system was arranged in the order of steel mill slag tank combination of cow manure and limestone, precipitation tank and oxidation tank. During 54 days' operations, the pH values of the treated waters increased from 3.0 to 8.3 and 61 % of sulfate concentration in an initial water was decreased. In addition, the removal efficiencies for metals in the water were nearly 99.9% for Al, Fe, Zn and 92.6% for Mn. Thus, the combination of steel mill slag, cow manure and limestone can be used as neutralization 때d metal removal for acid mine drainage.

Investigation on soil contamination and its remediation system in the vicinity of abandoned Au-Ag mine in Korea (휴/폐광 금은광산 주변의 토양오염조사와 복구시스템 연구)

  • 정명채
    • Economic and Environmental Geology
    • /
    • v.32 no.1
    • /
    • pp.73-82
    • /
    • 1999
  • The objectives of this study are to investigate soil contamination in the vicinity of abandoned Au-Ag mine and to apply a remediation technique of liming to tailings. In the study area of the Imcheon Au-Ag mine, soils were sampled in and around the mine the analyzed by Atomic Absorption Spectrometry extracted by both 0.1N HCl and aqua regia. Elevated levels of Cd, Cu, Pb and Zn concentrations extracted by 0.1N HCl were found in soils taken from tailings site. These high contents directly influenced metal concentrations in soils taken in the vicinity of the site. This is mainly due to clastic movement by wind and effluent of mine waste water. In addition, relatively enriched concentrations of the metals were found in soils extrated by aqua regia due to strong decomposition of the samples compared with 0.1N HCl extration. According to the statistical approach, metal concentrations in soils by 0.1N HCl had a positive correlation with those by aqua regia extraction. Mine waste waters and stream waters were also sampled around the mine in spring and summer and analyzed by AAS for Cd, Cu, Pb and Zn, and by Ion Chromatography for anions. Like soils developed over tailings, significant levels of metals and sulphates were found in the mine waste waters ranging of 0.2~0.3, 0.5~2.0, 0.2~2.8, 30~50 and 1,240~4,700 mg/l of Cd, Cu, Pb, Zn and $SO_4^{2-}$, respectively. These elevated levels influenced in the stream waters in the vicinity of the tailings site. In seasonal variation of metal and anion contents, relatively high levels were found in waters sampled on summer due to leaching the metals and anions from tailings by rain. This study also examined the possibility of lime treatment for remediation of acid mine tailings and assumed to be 46 tones of pulverized lime for neutralization of the tailings.

  • PDF

Effect of Sulfer Containing Fertilizers on Grain Yield and Chemical Composition of Soybean (황함유 비료가 콩의 종실수량과 성분함량에 미치는 영향)

  • Chae, Jae-Suk;Kim, Young-Doo;Park, Tae-Ill;Chang, Young-Sun;Park, Keun-Yong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.38 no.2
    • /
    • pp.183-188
    • /
    • 1993
  • This experiment was conducted to investigate the effect of sulfur containing fertilizers on growth, yield and nutritive quality of soybean as affected by lime application at reclaimed soil. Lime application for neutralization requirements showed the effect of increased grain yield about 32% compared to the non application at newly opened land of red and yellow soil. In case of lime application, the sulfur containing fertilizers combined with super phosphate, ammonium sulfate, and gypsum increased the grain yield by 31%, 11%, and 3%, respectively. When lime was not applied, magnesium carbonate application increased the yield by 47%, super phosphate by 22%, and gypsum by 15%. The protein content of grain was higher at lime application than those of non lime application and was increased by the application of sulfur containing fertilizer. But lipid content was not affected by lime or sulfur application. From the above results obtained it was concluded that sulfur fertilizer effect under lime application was significant when combined with super phosphate or ammonium sulfate application. Magnesium carbonate or super phosphate application was the best combination with sulfur-containing fertilizer.

  • PDF

Chemical Composition of Rainwater in Chonju-city, Korea (전주시에서 채수된 강수의 화학적 조성)

  • 나춘기;정재일
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.5
    • /
    • pp.371-381
    • /
    • 1997
  • Precipitation sampls were collected in Chonju-city during October 1994 to September 1995 and were analysed for major ions (N $a^{+}$, $K^{+}$, $Ca^{2+}$, $Mg^{2+}$, C $l^{[-10]}$ , NO/$_3$, S $O_4$$^{2-}$) and trace metals (Al, Cd, Ni, Pb, Sr, Zn) in addition to pH, in order to understand the chemical characteristics of acid rain and to estimate the origin of the determined ions. Most rain showed a neutral or alkaline character, and only 35% had a pH lower than 5.6. S $O_4$$^{2-}$ and N $O_3$$^{[-10]}$ are identified as the primary contributors to precipitation acidity in this region. Neutralization of precipitation acidity occurs as a result of the dissolution of alkaline compounds containing $Ca^{2+}$, $Mg^{2+}$ and $K^{+}$. S $O_4$$^{2-}$ and N $O_3$$^{[-10]}$ precipitation concentrations exhibit a seasonal pattern in which higher concentrations are observed during spring months and lower concentrations during summer months. However, the seasonal behavior of $H^{+}$ concentrations differs from this pattern, in that the highest concentrations occur during autumn months, owing to the different influence of neutralization processes. In all rain, S $O_4$$^{2-}$ concentration exceeded NO/$_3$$^{[-10]}$ concentration. The contribution of maritime sources to the total S $O_4$$^{2-}$ concentration was very low or negligible. For rain strongly affacted by yellow sand, $Ca^{2+}$, $Mg^{2+}$ and $K^{+}$ ions show a sharp increase in concentration, reflecting the increased amount of dust and soil suspended in atmosphere. At the same time, S $O_4$$^{2-}$ and N $O_3$$^{[-10]}$ concentrations are at their highest levels while $H^{+}$ values are not comparably elevated, presumably beacause much of the acidity has been neutralized by alkaline substances. The seasonal variance of trace metal concentrations in rainwater is similar to that of major cations. The annual wet flux of acidic pollutants and trace metals wat calculated to be as follows: N $O_3$$^{[-10]}$ ; 2.32 g/$m^2$, S $O_4$$^{2-}$, 5.34 g/$m^2$, Al; 6.30 mg/$m^2$, Cd; 0.62 mg/$m^2$, Ni; 4.08 mg/$m^2$, Pb: 9.76 mg/$m^2$, Sr; 5.94 mg/$m^2$, Zn; 111 mg/$m^2$./$m^2$.

  • PDF

Influence of lime and phosphorus application on nutrient uptake by corn in newly reclaimed acidic soils. -II. With special reference to soil texture and distribution of zinc in leaves and stem (산성신개간토양(酸性新開墾土壤)에서 석회(石灰) 및 인산(燐酸)이 옥수수의 양분흡수(養分吸收)에 미치는 영향(影響) -II. 토성(土性)과 아연(亞鉛)의 흡수(吸收) 및 부위별(部位別) 분포(分布))

  • Kim, Young-Koo;Hong, Chong-Woon;Oh, Yong-Taeg
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.9 no.2
    • /
    • pp.77-81
    • /
    • 1976
  • On a newly reclaimed acidic soil, investigation was made to find out the influence of lime and phosphorus application by a large quantity on the uptake of zinc by corn and its distribution in leaves and stem, under a factorial combination with two levels of zinc, lime, and phosphorus with three kinds of soil texture. The results are summarized as following, 1. The concentration of zinc in stem reflected the zinc uptake status of corn better than the leaves. The concentration of zinc in stem responded clearly to the treatments of lime and zinc, while those of leaves tended to be constant regardless of the application of lime and zinc. 2. The zinc uptake was not improved by compost application though it increased the yield of corn significantly. 3. The application of lime for neutralization of soil with low level of phosphorus application affected the yield of dry matter differently among different soils, slight increase on sandy loam soil, slight decrease on loam soil, and significant decrease on clay loam soil. The yield decrease on clay soil is considered to be due to the decreased availability of applied phosphorus owing to the large amount of lime applied.

  • PDF

Neutralization of Pyrophyllite Mine Wastes by the Lime Cake By-Product (부산석회를 이용한 납석광산 폐석의 중화처리)

  • Yoo, Kyung-Yoal;Cheong, Young-Wook;Ok, Yong-Sik;Yang, Jae-E.
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.3
    • /
    • pp.215-221
    • /
    • 2005
  • Numerous abandoned or closed mines are present in the steep mountain valleys in Korea due to the depression of the mining industry since the late 1980s. From the mines, enormous amounts of wastes were dumped on the slopes causing sedimentation and acid mine drainage to be discharged directly into streams causing detrimental effects on surrounding environment. Objective of this research was to evaluate the feasibility of the lime cake by-product from the soda ash production (Solvay process) to neutralize the pyrophyllite mine wastes, which have discharged the acid drainage to soil and stream in the watershed. The pH of mine wastes was strongly acidic at pH 3.67 containing over 16% of $Al_2O_3$ and 11% of $Fe_2O_3$. Whereas the lime cake by-product was strongly basic at pH 9.97 due to high contents of CaO, MgO and $CaCl_2$ as major components. Column experiments were conducted to test the neutralizing capacity of the lime cake by-product for the acidic pyrophyllite mine wastes. The column packed with the wastes (control) was treated with the lime cake by-product, calcium carbonate, the dressing soil or combination. The distilled water was eluted statically through the column and the leachate was collected for the chemical analyses. Treatments of the mine wastes with the lime cake by-product (or calcium carbonate) as mixtures increased pH of the leachate from $3.5{\sim}4.0\;to\;7{\sim}8$. Concentrations of Fe and Al in the leachate were also decreased below 1.0 mg $L^{-1}$. A Similar result was observed at the combined treatments of the mine waste, the lime by-product (or calcium carbonate) and the dressing soil. The results indicated that the lime cake by-product could sufficiently neutralize the acid drainage from the pyrophyllite mine wastes without dressing soils.

The Soil and Water Pollution caused by the Weathering of Pyrophyllite Deposits: Upstream Part of Hoidong Water Reservoir in Pusan (납석광산에서 발생하는 토양 및 수질오염 실태 : 부산광역시 회동수원지 상류 지역)

  • 박맹언;김근수
    • Journal of Environmental Science International
    • /
    • v.7 no.2
    • /
    • pp.149-156
    • /
    • 1998
  • Enoronmental problems caused by certain geologic conditions Include pollution of soil by heavy metal, acidization of souls , acid mine drainage, Pound-water pollution, and natural radioactivity, as well as zoo-logical hazards such as landslide and subsidence. The acrid mine drainage contains large amount of heavy metals nO, therefore. cause serious pollution onto the nearby drainage systems and soils. In spite of this prospective environmental danger, few studies have been done on the acid mine drainage derived from non-metallic ore deposits such as pyrophyllitefNapseok) deposits. The sudo-bearing pyrophyllite ores, alteration zones, and mine talllngs of pyrophylllte deposits produce acrid mine drainage by the okidation of weathering. Compared to the fresh host rocks, the ores and altered rocks of pyrophyllite deposits produce acidic solution which contain higher amount of heavy metals because of OeP lower buffering capacity to acrid solution. The pus of urine water and nearby stream water of pyrophyllite deposits are 2.1~3.7, which are strong- ly acidic and much lower than that (6.2~7.2) of upstream water and than that (6.8~7.6) of the stream water derived from the non-mineralized area. This study reveals that this acrid mine drainage can affect the downstream area which is 8km far from the pyrophyllite deposits, even though the drain Is diluted with abundant non-contaminated river water This suggmists that not only acid mine drainage but also the sulfide-bearing sediments originated from the pyrophyllite deposits move downstream and form acidic water through continuous oxidation reaction. The heavy metals such as Pb, Zn, Cu, Cd, Nl, Mn and Fe are enriched In the mine water of low pH, and their contents decrease as the pH of mine water Increases because of the Influx of fresh stream wainer. SoUs of the Pyrophyulte deposits are characterized by high contents of heavy metals. The stream sediments containing the yellowish brown precipitates formed by neutralization of acid mine drainage occur in all parts of the stream derived from the pyrophyllite deposits, and the sediments also contain high amounts of heavy metals. In summary, the acid mine drainage of the pyrophyllite deposits is located in the upstream part of Hoidong water reservoir in Pusan contains large amounts of heavy metals and flows into the Holdong water reservoir without any purification process. To protect the water of Holdong reservoir, the acid mine drainage should be treated with a proper purification process.

  • PDF