• 제목/요약/키워드: Soil moisture potential

검색결과 174건 처리시간 0.023초

SIMULATION OF SOIL MOISTURE VARIABILITY DUE TO CLIMATE ORANGE IN NORTHEAST POND RIVER WATERSHED, NEWFOUNDLAND, CANADA

  • A. Ghosh Bobba;Vijay P. Singh
    • Water Engineering Research
    • /
    • 제4권1호
    • /
    • pp.31-43
    • /
    • 2003
  • The impacts of climate change on soil moisture in sub - Arctic watershed simulated by using the hydrologic model. A range of arbitrary changes in temperature and precipitation are applied to the runoff model to study the sensitivity of soil moisture due to potential changes in precipitation and temperature. The sensitivity analysis indicates that changes in precipitation are always amplified in soil moisture with the amplification factor for flow. The change in precipitation has effect on the soil moisture in the catchment. The percentage change in soil moisture levels can be greater than the percentage change in precipitation. Compared to precipitation, temperature increases or decreases alone have impacts on the soil moisture. These results show the potential for climate change to bring about soil moisture that may require a significant planning response. They are also indicative of the fact that hydrological impacts affecting water supply may be important in consider-ing the cost and benefits of potential climate change.

  • PDF

HOURLY VARIATION OF PENMAN EVAPOTRANSPIRATlON CONSIDERING SOIL MOISTURE CONDITION

  • Rim, Chang-Soo
    • Water Engineering Research
    • /
    • 제5권1호
    • /
    • pp.1-16
    • /
    • 2004
  • The purpose of this study is to understand the characteristics of hourly PET(Potential Evapo Transpiration) variation estimated using Penman ET model. The estimated PET using Penman model was compared with measured ET. For this study, two subwatersheds were selected, and fluxes, meteorological data and soil moisture data were measured during the summer and winter days. During the winter days, the aerodynamic term of Penman ET is much greater than that of energy term of Penman ET for dry soil condition. The opposite phenomena appeared fer wet soil condition. During the summer days, energy term is much more important factor for ET estimation compared with aerodynamic term regardless of soil moisture condition. Penman ET, measured ET, and energy term show the similar hourly variation pattern mainly because the influence of net radiation on the estimation of Penman ET is much more significant compared with other variables. Even though there are much more soil moisture in the soil during the wet days, the estimated hourly ET from Penman model and measured hourly ET have smaller values compared with those of dry days, indicating the effect of cloudy weather condition.

  • PDF

A Perspective on Radar Remote Sensing of Soil Moisture

  • Park, Sang-Eun
    • 대한원격탐사학회지
    • /
    • 제27권6호
    • /
    • pp.761-771
    • /
    • 2011
  • The sensitivity of microwave scattering to the dielectric properties and the geometric structure of soil surfaces makes radar remote sensing a challenge for a wide range of environmental issues directly related to the condition of natural surfaces. Especially, the potential for retrieving soil moisture with a high spatial and/or temporal resolution represents a significant contribution to hydrological and ecological modeling. This paper aims to review the current state of the art in SAR technology and methodological issues towards the discovery of a new potential accurate monitoring of soil moisture changes. In this paper, important parameters or constraints significantly affect the sensitivity of the measurements to soil moisture, such as roughness statistics, spatial resolution, and local topography, are discussed to improve the applicability of SAR remote sensing techniques. This study particularly intends to discuss important notes for developing smart and reliable methods capable of retrieving geophysical information.

노지 과수원에서 토양수분센서 설치 위치에 따른 토양수분 변화 비교 (Comparison of Soil Moisture Changes Based on the Installation Position of Soil Moisture Sensors in the Korean Orchard Field Soils)

  • 김종균;김현석;강경진;김종윤
    • 생물환경조절학회지
    • /
    • 제33권2호
    • /
    • pp.107-113
    • /
    • 2024
  • 노지 토양의 효율적인 수분관리를 위해서는 토양수분센서를 알맞게 사용하여야 하며, 특히 노지 과수와 같이 넓은 뿌리환경을 가지는 토양 환경에서는 적합한 센서 설치 위치가 매우 중요하다. 이에 본 실험에서는 노지 과수원에서 다양한 거리와 깊이에 토양수분장력 센서를 설치하여 각 위치의 토양수분장력 값을 측정하고, 센서 설치 위치에 따른 토양수분 변화 정도를 비교하여, 이에 따른 최적 토양수분센서 설치 위치를 알아보기 위해 수행하였다. 국내 두 지역에 위치한 사과 및 배 과수원에서 각 과수의 수간으로부터 거리 20, 40, 60cm, 토양표면으로부터 깊이 10, 20, 30cm로 각각 9개의 토양수분장력센서(TEROS 21, METER Group)를 설치하여 2년간의 토양수분장력 변화 정도를 비교 분석하였다. 두 과수원 모두 센서가 과수의 수간으로부터 가까울수록, 토양의 표면으로부터 얕게 설치되어 있을수록 토양수분장력 값의 변화 정도가 크게 나타났으며, 20cm × 10cm(과수의 수간으로부터 거리 × 토양표면으로부터 깊이) 지점에서의 토양수분장력 값의 변화 정도가 가장 큰 것으로 나타나 토양수분센서 설치에 가장 적합한 지점으로 판단되었다. 그러나 연도가 달라짐에 따라 과수의 뿌리가 생장하며 센서 설치 위치에 따른 토양수분장력의 변화 정도 양상이 조금씩 변하는 것을 확인할 수 있었다. 노지과수와 같이 장기간 재배하는 작물의 토양수분 환경을 알맞게 측정하기 위해서는 현장에서의 주기적인 토양수분 변화 관찰 및 보완을 통해 센서 설치 위치를 변경하는 노력도 필요할 것으로 나타났다.

실내의 저광도하에서 토양수분이 단풍나무의 생육에 미치는 영향 (Effects of Soil Moisture on the Growth of Acer Palmatum under Indoor Low Light Intensity)

  • 윤지영;김민수
    • 한국조경학회지
    • /
    • 제28권4호
    • /
    • pp.21-28
    • /
    • 2000
  • This study is conducted to analyze effects of soil moisture on the growth of maple(Acer palmatum) under indoor low light intensity. Maples grew under three different light intensities such as sunny place(average 353.2W/$m^2$), half shade(average 7.7 W/$m^2$) and shade/(average 1.9W/$m^2$).Under half shady and shady condition, each 24 planters(2 maples planted in each planter) were used and divided into 3 groups treated with different watering points. Three levels of soil water potential were set for watering points, such as -200mbar, -300mbar or -500mbar. Under sunny condition, there were only group of 8 planters, as comparison. Watering was applied when soil water potentials reached -500maber. The results of plant growth experiment are as followed. 1. Under the shady condition, 32 maples died among 48 maples for 7 months. 9 maples survived, watered at soil water potential -200mbar, 5maples at -300mbar and 2maples at -500mbar. 2. Leaf water content ratios were higher under lower light intensity. For the cell wall became thinner under lower light intensity. 3. Maples in shady were easy to die due to having thin cell wall, therefore they were easy to loss the turgor pressure. 4. In case of half shady condition, the group, watered at soil water potential -200mbar, had much smaller amount of rootlet than -300mbar, because there were excessive soil water. The group, watered at soil water potential -500mbar, had smaller amount of rootlet than -300mbar and there was a remarkable difference in leaf water potential in spite of nearly same soil water potential, because leaves received the water stress under lower soil water potential. 5. When maples grew soundly, the leaf water potential was largely influenced by the soil water potential.

  • PDF

RS 기법을 이용한 토양수분과 토양 색에 관련된 토양의 분광반사 (Spectral Reflectance of Soils Related to the Interaction of Soil Moisture and Soil Color Using Remote Sensing Technology)

  • 박종화
    • 한국농공학회지
    • /
    • 제45권5호
    • /
    • pp.77-84
    • /
    • 2003
  • Recent advances in remote sensing techniques provide the potential for monitoring soil color as well as soil moisture conditions at the spatial and temporal scales required for detailed local modeling efforts. Soil moisture as well as soil color is a key feature used in the identification and classification of soils. Soil spectral reflectance has a direct relationship with soil color, as well as to other parameters such as soil moisture, soil texture. and organic matter. We evaluate the influence of seven soil properties, soil color and soil moisture, on soil spectral reflectance. This paper presents the results obtained from the ground-truth spectral reflectance measurements in the 300-1100 nm wavelength range for various land surfaces. The results suggest that the reflectance properties of soils are related to soil color, soil texture, and soil moisture. Increasing soil moisture content generally decreases soil reflectance which leads to parallel curves of soil reflectance spectra across the entire shortwave spectrum. We discuss the relationships between the soil reflectance and the Munsell Soil Color Charts which contain standard color chips with colors specified by designations for hue, value, and chroma.

토양수분퍼텐셜이 복분자 습해와 토양특성에 미치는 영향 (Effects of Soil Water Potential on the Moisture Injury of Rubus coreanus Miq. and Soil Properties)

  • 안병구;김갑철;김대향;이진호
    • 한국토양비료학회지
    • /
    • 제44권2호
    • /
    • pp.168-175
    • /
    • 2011
  • 토양수분포텐셜이 복분자 생육에 미치는 영향을 조사하기 위하여 복분자 시설하우스에서 -5 ~ -40 kPa 수준으로 토양수분을 처리하였다. 시설하우스내의 토양유효수분은 5.6%이었고, 수분포텐셜에 따라 토양수분함량이 높아지면 토양 pH와 치환성 Ca은 증가하였고, 치환성 K와 전질소 함량은 감소하였으며, 유기물함량은 수분처리 9일 이후부터 감소하였다. 수분포텐셜과 토양수분함량 간에는 y = 96.534 - 20.28In(x)의 지수함수 근사식이 성립되었다. 수분포텐셜이 -20 kPa (토양 수분 27.5%) 이상이면 복분자 잎의 엽록소 함량이 감소하였고 질소흡수가 억제되며, P 함량은 수분공급 시간에 따라 증가하였다. 수분포텐셜 -20 kPa 이상의 수준으로 7일 이상이 경과하면 뿌리활력이 급격히 감소되어 생육이 위축되었다. 지상부에 대한 뿌리비율 (T/R률)은 수분공급 9일까지 급격히 감소하였다. 휴면기의 복분자 줄기와 뿌리의 탄수화물 함량은 -5 kPa과 -10 kPa 처리구에서 가장 낮아 동해 위험도가 가장 높았다.

위성토양수분과 지점강우량을 이용한 지역 선행습윤조건 분석 (Analysis of Regional Antecedent Wetness Conditions Using Remotely Sensed Soil Moisture and Point Scale Rainfall Data)

  • 선우우연;김다은;황석환;최민하
    • 대한원격탐사학회지
    • /
    • 제30권5호
    • /
    • pp.587-596
    • /
    • 2014
  • 토양수분의 시공간적 변동성은 유역의 수문학적인 반응과 지표 대기간의 상호작용에서 중요한 관심사로 특히, 강우유출 예측 시 유역의 강우사상에서 사전 토양수분 상태 즉, 선행습윤조건(antecedent wetness conditions, AWC)이 고려되어야 한다. 본 연구에서는 선행습윤조건을 알아보기 위한 지표로 토양 습윤지수(SWI), 5일 선행강우지수($API_5$), 위성토양수분($SM_{rs}$), 5일 지점토양수분($SM_{g5}$)을 선정하여 한반도 4개 지점에 대한 선행수분조건을 파악하였다. 토양수분 자료는 AMSR-E로 관측된 자료를 활용하였으며, 이에 따라 각 지역별로 2011년의 강우사상을 선택하여 Soil Conservation Service-Curve Number (SCS-CN)법과 강우량을 활용하여 직접유출고와 최대잠재보유량을 산정하였다. 이를 토양의 습윤상태를 나타내는 4개 지표와의 관계를 살펴본 결과 최대잠재보유량과 SWI가 평균 -0.73의 높은 상관계수를 보였다. 또한 토양수분의 시간적 변동성을 나타내는 time length를 산정한 결과 지역 별로 상이하게 나타났으며 이는 연구지역 및 토양 특성을 반영한 것으로 판단된다. 추후 관측된 토양수분이 지표의 습윤상태를 예측하는데 정량적인 정보를 제공할 수 있으므로 이에 대한 지속적인 모니터링 및 분석이 필요할 것으로 사료된다.

토양수분함량 예측 및 계획관개 모의 모형 개발에 관한 연구(I) (A Study on the Development of a Simulation Model for Predicting Soil Moisture Content and Scheduling Irrigation)

  • 김철회;고재군
    • 한국농공학회지
    • /
    • 제19권1호
    • /
    • pp.4279-4295
    • /
    • 1977
  • Two types of model were established in order to product the soil moisture content by which information on irrigation could be obtained. Model-I was to represent the soil moisture depletion and was established based on the concept of water balance in a given soil profile. Model-II was a mathematical model derived from the analysis of soil moisture variation curves which were drawn from the observed data. In establishing the Model-I, the method and procedure to estimate parameters for the determination of the variables such as evapotranspirations, effective rainfalls, and drainage amounts were discussed. Empirical equations representing soil moisture variation curves were derived from the observed data as the Model-II. The procedure for forecasting timing and amounts of irrigation under the given soil moisture content was discussed. The established models were checked by comparing the observed data with those predicted by the model. Obtained results are summarized as follows: 1. As a water balance model of a given soil profile, the soil moisture depletion D, could be represented as the equation(2). 2. Among the various empirical formulae for potential evapotranspiration (Etp), Penman's formula was best fit to the data observed with the evaporation pans and tanks in Suweon area. High degree of positive correlation between Penman's predicted data and observed data with a large evaporation pan was confirmed. and the regression enquation was Y=0.7436X+17.2918, where Y represents evaporation rate from large evaporation pan, in mm/10days, and X represents potential evapotranspiration rate estimated by use of Penman's formula. 3. Evapotranspiration, Et, could be estimated from the potential evapotranspiration, Etp, by introducing the consumptive use coefficient, Kc, which was repre sensed by the following relationship: Kc=Kco$.$Ka+Ks‥‥‥(Eq. 6) where Kco : crop coefficient Ka : coefficient depending on the soil moisture content Ks : correction coefficient a. Crop coefficient. Kco. Crop coefficients of barley, bean, and wheat for each growth stage were found to be dependent on the crop. b. Coefficient depending on the soil moisture content, Ka. The values of Ka for clay loam, sandy loam, and loamy sand revealed a similar tendency to those of Pierce type. c. Correction coefficent, Ks. Following relationships were established to estimate Ks values: Ks=Kc-Kco$.$Ka, where Ks=0 if Kc,=Kco$.$K0$\geq$1.0, otherwise Ks=1-Kco$.$Ka 4. Effective rainfall, Re, was estimated by using following relationships : Re=D, if R-D$\geq$0, otherwise, Re=R 5. The difference between rainfall, R, and the soil moisture depletion D, was taken as drainage amount, Wd. {{{{D= SUM from { {i }=1} to n (Et-Re-I+Wd)}}}} if Wd=0, otherwise, {{{{D= SUM from { {i }=tf} to n (Et-Re-I+Wd)}}}} where tf=2∼3 days. 6. The curves and their corresponding empirical equations for the variation of soil moisture depending on the soil types, soil depths are shown on Fig. 8 (a,b.c,d). The general mathematical model on soil moisture variation depending on seasons, weather, and soil types were as follow: {{{{SMC= SUM ( { C}_{i }Exp( { - lambda }_{i } { t}_{i } )+ { Re}_{i } - { Excess}_{i } )}}}} where SMC : soil moisture content C : constant depending on an initial soil moisture content $\lambda$ : constant depending on season t : time Re : effective rainfall Excess : drainage and excess soil moisture other than drainage. The values of $\lambda$ are shown on Table 1. 7. The timing and amount of irrigation could be predicted by the equation (9-a) and (9-b,c), respectively. 8. Under the given conditions, the model for scheduling irrigation was completed. Fig. 9 show computer flow charts of the model. a. To estimate a potential evapotranspiration, Penman's equation was used if a complete observed meteorological data were available, and Jensen-Haise's equation was used if a forecasted meteorological data were available, However none of the observed or forecasted data were available, the equation (15) was used. b. As an input time data, a crop carlender was used, which was made based on the time when the growth stage of the crop shows it's maximum effective leaf coverage. 9. For the purpose of validation of the models, observed data of soil moiture content under various conditions from May, 1975 to July, 1975 were compared to the data predicted by Model-I and Model-II. Model-I shows the relative error of 4.6 to 14.3 percent which is an acceptable range of error in view of engineering purpose. Model-II shows 3 to 16.7 percent of relative error which is a little larger than the one from the Model-I. 10. Comparing two models, the followings are concluded: Model-I established on the theoretical background can predict with a satisfiable reliability far practical use provided that forecasted meteorological data are available. On the other hand, Model-II was superior to Model-I in it's simplicity, but it needs long period and wide scope of observed data to predict acceptable soil moisture content. Further studies are needed on the Model-II to make it acceptable in practical use.

  • PDF

Simulation of Daily Soil Moisture Content and Reconstruction of Drought Events from the Early 20th Century in Seoul, Korea, using a Hydrological Simulation Model, BROOK

  • Kim, Eun-Shik
    • Journal of Ecology and Environment
    • /
    • 제33권1호
    • /
    • pp.47-57
    • /
    • 2010
  • To understand day-to-day fluctuations in soil moisture content in Seoul, I simulated daily soil moisture content from 1908 to 2009 using long-term climatic precipitation and temperature data collected at the Surface Synoptic Meteorological Station in Seoul for the last 98 years with a hydrological simulation model, BROOK. The output data set from the BROOK model allowed me to examine day-to-day fluctuations and the severity and duration of droughts in the Seoul area. Although the soil moisture content is highly dependent on the occurrence of precipitation, the pattern of changes in daily soil moisture content was clearly quite different from that of precipitation. Generally, there were several phases in the dynamics of daily soil moisture content. The period from mid-May to late June can be categorized as the initial period of decreasing soil moisture content. With the initiation of the monsoon season in late June, soil moisture content sharply increases until mid-July. From the termination of the rainy season in mid-July, daily soil moisture content decreases again. Highly stochastic events of typhoons from late June to October bring large amount of rain to the Korean peninsula, culminating in late August, and increase the soil moisture content again from late August to early September. From early September until early October, another sharp decrease in soil moisture content was observed. The period from early October to mid-May of the next year can be categorized as a recharging period when soil moisture content shows an increasing trend. It is interesting to note that no statistically significant increase in mean annual soil moisture content in Seoul, Korea was observed over the last 98 years. By simulating daily soil moisture content, I was also able to reconstruct drought phenomena to understand the severity and duration of droughts in Seoul area. During the period from 1908 to 2009, droughts in the years 1913, 1979, 1939, and 2006 were categorized as 'severe' and those in 1988 and 1982 were categorized as 'extreme'. This information provides ecologists with further potential to interpret natural phenomenon, including tree growth and the decline of tree species in Korea.