• Title/Summary/Keyword: Soil mineral nitrogen

Search Result 168, Processing Time 0.027 seconds

Effect of Long Term Waterlogging on the Growth and Nutrient Contents of 'Campbell Early' and 'Kyoho' Grapevine Cultivars (장기 침수가 포도 '캠벨얼리'와 '거봉' 품종의 생육과 양분함량에 미치는 영향)

  • Kang, Seok-Beom;Lee, In-Bog;Jang, Han-Ik;Park, Jin-Myeon;Moon, Doo-Khil
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.2
    • /
    • pp.178-184
    • /
    • 2008
  • This work was carried out to investigate the effect of waterlogging on the growth and nutrient contents of 'Campbell Early' and 'Kyoho' grapevines under the vinyl house condition from June 14 to July 20, 2005. For the trial, seedlings of two-year-old grapevine were transplanted to 40 L pot with a sandy loam soil. Irrigation point of non-waterlogging(control) treatment was controlled at -40 kPa of soil water tension using tensiometer and waterlogging treatments were imposed for 35 days at the water levels of above 10 cm from the soil surface using tap water. The growth of aerial(shoot length, leaf number and stem diameter) and underground(root) parts of 'Campbell Early' and 'Kyoho' grapevines tended to be wholly reduced by waterlogging, while the growth of aerial parts were more severely impaired in 'Kyoho' than in 'Campbell Early' cultivar. The different responses for waterlogging between two grapevines seem to be related with the capacity for absorbing mineral nutrients, because nitrogen content of 'Campbell Early' cultivar leaves was significantly higher than that of 'Kyoho' cultivar although the contents of phosphorus and potassium in leaves of two grapevine cultivars were similarly declined. There was no significant different of fruit quality, such as contents of soluble solid, titratable acidity and weight of berry in 'Campbell Early' between waterlogging and control. In 'Kyoho' cultivar, however, berry weight and titratable acidity were decreased and soluble solid content was increased by waterlogging. It was assumed that waterlogging stress for grapevines promotes maturation and coloring processes of berries by stimulating maturation hormone such as ethylene. In conclusion, 'Campbell Early' cultivar seems to be more tolerable than 'Kyoho' cultivar when comparing the growth responses and nutrient contents between two grapevine cultivars under waterlogging.

Effects of Nitrogen , Phosphorus and Potassium Application Rates on Oversown Hilly Pasture under Different Levels of Inclination II. Changes on the properties, chemical composition, uptake and recovery of mineral nutrients in mixed grass/clover sward (경사도별 3요소시용 수준이 겉뿌림 산지초지에 미치는 영향 II. 토양특성 , 목초의 무기양분함량 및 3요소 이용율의 변화)

  • 정연규;이종열
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.5 no.3
    • /
    • pp.200-206
    • /
    • 1985
  • This field experiment was undertaken to assess the effects of three levels of inclination ($10^{\circ},\;20^{\circ},\;and\;30^{\circ}$) and four rates of $N-P_2O_5-K_2O$ (0-0-0-, 14-10-10, 28-25-25, and 42-40-40kg/10a) on establishment, yield and quality, and botanical compositions of mixed grass-clover sward. This second part is concerned with the soil chemical properties, concentrations and uptake of mineral nutrients, and percent recovery and efficiency of NPK. The results obtained after a two-year experiment are summarized as follows: 1. The pH, exchangeable Mg and Na, and base saturation in the surface soils were decreased by increasing the grade of inclination, whereas organic matter and available $P_2O_5$ tended to be increased. However, the changes in the Ca content and equivalent ratio of $K\sqrt{Ca+Mg}$ were not significant. The pH, exchangeable Ca and Mg, and base saturation were reduced by increasing the NPK rate, whereas available $P_2O_5$, exchangeable K, and equivalent ratio of $K\sqrt{Ca+Mg}$ tended to be increased. 2. The concentrations of mineral nutrients in grasses and weeds were not significantly affected by increasing the grade of slope in hilly pasture, whereas the concentrations of N, K, and Mg in legume were the lowest with the steep slope, which seemed to be related to the low legume yield. The Mg concentrations of all forage species were below the critical level for good forage growth and likelihood of grass tetany. 3. The increase of NPK rate resulted in the increment of N, K and Na concentrations, and the decrease of Mg and Ca in grasses. The P concentration was increased with P application, but there were no differences in that among the P rates applied. It resulted also in a slight increase of K, and a decrease of Mg in legume, but the contents of N, Ca, and Na were not affected by that. On the other hand, it has not affected the mineral contents in weeds except a somewhat increase of N. The mixed forages showed a increase of N and K contents, a decrease of Ca and Mg, and a slight change in P and Na. 4. The percent recovery of N, P and K by mixed forages were greatly decreased by increasing the grade of inclination and NPK rate. They were high in the order; K>N>P. The efficiency of mixed NPK applications was decreased by that. The efficiency of mixed NPK fertilizers absorbed was slightly decreased by the increased rate of NPK, but it was not affected by the grade of inclination.

  • PDF

An Initiative Study on Relationship between Algal Blooms and Asian Dust for Regulation of Algal Blooms (조류 성장 억제를 위한 녹조 및 적조 발생과 황사의 상관관계 초기적 연구)

  • Kim, Tai-Jin;Jeong, Jaechil;Seo, Rabeol;Kim, Hyung Moh;Kim, Dae Geun;Chun, Youngsin;Park, Soon-Ung;Yi, Sehyoon;Park, Jun Jo;Lee, Jin Ha;Lee, Jay J.;Lee, Eun Ju
    • KSBB Journal
    • /
    • v.29 no.4
    • /
    • pp.285-296
    • /
    • 2014
  • Although the problems of the algal blooms have been world-widely observed in freshwater, estuary, and marine throughout the year, it is not yet certain what are the basic causes of such blooms. Consequently, it is very difficult to predict when and where algal blooms occur. The constituents of the Asian dust are in a good agreement with the elements required for the algal growth, which suggests some possible relationship between the algal blooms and the Asian dust. There have been frequently algal blooms in drinking water from rivers or lakes. However, there is no any algal blooms in upwelling waters where the Asian dust cannot penetrate into the soil due to its relatively weak settling velocity (size of particles, $4.5{\pm}1.5{\mu}m$), which implies the possible close relationship of the Asian dust with algal blooms. The present initiative study is thus intended firstly in Korea to illustrate such a relationship by reviewing typical previous studies along with 12 years of weekly iron profiles (2001~2012) and two slant culture experiments with the dissolved Asian dust. The result showed bacterial suspected colonies in the slant culture experiment that are qualitatively in a good agreement with the recent Japanese studies. Since the diatoms require cheap energy (8%) compared to other phytoplankton (100%) to synthesize their cell walls by silicate, the present results can be used to predict algal blooms by diatoms if the concentrations of iron and silicate are available during spring and fall. It can be postulated that the algal blooms occur only if the environmental factors such as light, nutrients, calm water surface layer, temperature, and pH are simultaneously satisfied with the requirements of the micronutrients of mineral ions supplied by the Asian dust as enzymatic cofactors for the rapid bio-synthesis of the macromolecules during algal blooms. Simple eco-friendly methods to regulate the algal blooms are suggested for the initial stage of blooming with limited area: 1) to cover up the water surface with black curtain and inhibit photosynthesis during the day time, 2) to blow air (20.9%) or pure oxygen into the bottom of the water and inhibit rubisco for carbon uptake and nitrate reductase for nitrogen uptake activities in algal growth during the night, 3) to eliminate the resting spores or cysts by suction of bottom sediments as deep as 5 cm to prevent the next year germinations.

Effects of Mixture Application of Concentrated Pig Slurry and Byproduct Liquid Fertilizer on the Growth and Yield of Chinese Cabbage (돈분뇨 농축액비와 부산물액비 혼합시용이 배추의 생육과 수량에 미치는 영향)

  • Ryoo, Jong-Won
    • Korean Journal of Organic Agriculture
    • /
    • v.18 no.2
    • /
    • pp.271-282
    • /
    • 2010
  • This study was conducted to investigate the effects of concentrated pig slurry and byproduct liquid fertilizer on the growth and yield of chinese cabbage. The experiment was conducted in a rain-shelter house which was installed in the agriculture farm. Plants were fertilized with concentrated slurry (CS), byproduct fertilizer (BF), mixture of concentrated slurry and byproduct liquid fertilizer (CS+BF), combined organic and chemical fertilizer (CS+BF+BF) and chemical fertilizer (CF) as control. 1. The pH level of byproduct liquid was decreased from the 3rd to the 7th day and increased 9 day to 14th day, but pH of concentrated slurry (CS) was not greatly varied. EC of concentrated slurry (CS) and byproduct liquid was increased gradually during the fermentation. 2. The concentrated slurry (CS) was low in phosphorus, calcium, magnesium, rich in potassium and unbalanced as a low nitrogen and high potassium. But byproduct liquid fertilizer was balanced in nitrogen and potassium ratio. 3. The leaf number, head height, head width of chinese cabbage in treatment with organic and chemical fertilizer (CS+BF+N) showed significant difference compared with control. The plant and head weight of chinese cabbage in treatment of concentrated slurry was severely decreased, but that in treatment organic and chemical fertilizer (CS+BF+N) were increased 8, 10% compared with control chemical fertilizer (CF), respectively. 4. The content of $K_2O$ in plant tissue and in soil was increased after using concentrated slurry. On the other hand, mineral content of except $K_2O$ did not differ significantly between any of the treatments. In conclusion, organic and chemical fertilizer (CS+BF+N) could improve growth and head weight of chinese cabbage.

Study on the Screening System of Organic Resources for Agricultural Utilization (유기성 자원의 농업적 활용을 위한 선별체계 연구)

  • Lim, Dong-Kyu;Lee, Seung-Hwan;Kwon, Soon-Ik;So, Kyu-Ho;Sung, Ki-Suk;Koh, Mun-Hwan;Lee, Jeong-Taek
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.2
    • /
    • pp.92-100
    • /
    • 2005
  • This study was conducted to find suitable methods for screening organic resources useful for compost. Twenty-seven industrial and domestic sludges were collected from various cities and industrial areas. Contents of organic matters in the sludges were in the range of 79.3-98.0%, and the contents were much higher than the regulation level (60%) for raw materials of compost. Contents of total nitrogen were in the range of 0.8-2.6%. Contents of Fe and Al were very high. Content of HEM was highest in textile sludge ($257mg\;kg^{-1}$) and the contents in the others were in the range of $12.6-90.3mg\;kg^{-1}$. Content of PAHs was lowest in food sludge ($739.1{\mu}g\;kg^{-1}$ and pulp-mill sludge had the highest PAHs content ($3461.8{\mu}g\;kg^{-1}$). $Microtox^{(R)}$ $EC_{50}$ values were higher in the sludges which were classified as a possible material in composting after analysis and investigation. Lettuce root elongation and $EC_{50}$ values were relatively lower in pulp-mill sludge, sewage sludge 3 (Large city), food sludge and leather sludge. Therefore, mineral nutrients, heavy metals, organic compounds (HEM, PAHs, PCBs), and bioassay ($Microtox^{(R)}$ $EC_{50}$, Relative root elongation test) are recommended to be included in the screening system of raw material of compost in addition to the current regulation with organic matter and 8 heavy metals.

Potassium Physiology of Upland Crops (밭 작물(作物)의 가리(加里) 생리(生理))

  • Park, Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.3
    • /
    • pp.103-134
    • /
    • 1977
  • The physiological and biochemical role of potassium for upland crops according to recent research reports and the nutritional status of potassium in Korea were reviewed. Since physical and chemical characteristics of potassium ion are different from those of sodium, potassium can not completely be replaced by sodium and replacement must be limited to minimum possible functional area. Specific roles of potassium seem to keep fine structure of biological membranes such as thylacoid membrane of chloroplast in the most efficient form and to be allosteric effector and conformation controller of various enzymes principally in carbohydrate and protein metabolism. Potassium is essential to improve the efficiency of phoro- and oxidative- phosphorylation and involve deeply in all energy required metabolisms especially synthesis of organic matter and their translocation. Potassium has many important, physiological functions such as maintenance of osmotic pressure and optimum hydration of cell colloids, consequently uptake and translocation of water resulting in higher water use efficiency and of better subcellular environment for various physiological and biochemical activities. Potassium affects uptake and translocation of mineral nutrients and quality of products. potassium itself in products may become a quality criteria due to potassium essentiality for human beings. Potassium uptake is greatly decreased by low temperature and controlled by unknown feed back mechanism of potassium in plants. Thus the luxury absorption should be reconsidered. Total potassium content of upland soil in Korea is about 3% but the exchangeable one is about 0.3 me/100g soil. All upland crops require much potassium probably due to freezing and cold weather and also due to wet damage and drought caused by uneven rainfall pattern. In barley, potassium should be high at just before freezing and just after thawing and move into grain from heading for higher yield. Use efficiency of potassium was 27% for barley and 58% in old uplands, 46% in newly opened hilly lands for soybean. Soybean plant showed potassium deficiency symptom in various fields especially in newly opened hilly lands. Potassium criteria for normal growth appear 2% $K_2O$ and 1.0 K/(Ca+Mg) (content ratio) at flower bud initiation stage for soybean. Potassium requirement in plant was high in carrot, egg plant, chinese cabbage, red pepper, raddish and tomato. Potassium content in leaves was significantly correlated with yield in chinese cabbage. Sweet potato. greatly absorbed potassium subsequently affected potassium nutrition of the following crop. In the case of potassium deficiency, root showed the greatest difference in potassium content from that of normal indicating that deficiency damages root first. Potatoes and corn showed much higher potassium content in comparison with calcium and magnesium. Forage crops from ranges showed relatively high potassium content which was significantly and positively correlated with nitrogen, phosphorus and calcium content. Percentage of orchards (apple, pear, peach, grape, and orange) insufficient in potassium ranged from 16 to 25. The leaves and soils from the good apple and pear orchards showed higher potassium content than those from the poor ones. Critical ratio of $K_2O/(CaO+MgO)$ in mulberry leaves to escape from winter death of branch tip was 0.95. In the multiple croping system, exchangeable potassium in soils after one crop was affected by the previous crops and potassium uptake seemed to be related with soil organic matter providing soil moisture and aeration. Thus, the long term and quantitative investigation of various forms of potassium including total one are needed in relation to soil, weather and croping system. Potassium uptake and efficiency may be increased by topdressing, deep placement, slow-releasing or granular fertilizer application with the consideration of rainfall pattern. In all researches for nutritional explanation including potassium of crop yield reasonable and practicable nutritional indices will most easily be obtained through multifactor analysis.

  • PDF

Studies on the Use of Radioisotope Tracer Techniques to Investigate and Improve the Root Activities in Rice Plant(I) - Effect of Water Control in Soil of the Paddy Field Lacking in the Special Mineral Nutritions - (방사성(放射性) 동위체도입(同位體導入)과 그 추적기술(追跡技術)에 의(依)한 수도근계(水稻根系) 활성상(活性相)의 해명(解明)과 개선(改善)에 관(關)한 연구(硏究) - 특수성분(特殊成分) 결핍(缺乏) 답토양(沓土壤)에서의 용수조절(用水調節) 효과(效果)에 대(對)하여-(제1보)(第1報) -)

  • Ahn, Hak-Soo;Chung, Hee-Don;Kim, Kyu-Won;Shim, Sang-Chil
    • Applied Biological Chemistry
    • /
    • v.15 no.1
    • /
    • pp.77-84
    • /
    • 1972
  • A field experiment was conducted to determine the factors responsible in limiting nutrient up take and root activity in low productive paddy fold. Radiosotope of phosphorus-32 was used as a tracer. Results of the study were as follows: 1. On yield components responsible for increase yield indicated that number of ears per panicle and ripening ratio were closely related to increase yield. 2. Root volume or root feeding area has significant influence in increasing rice yield. 3. Root volume indicative of root activity and nutrient uptake can be effected by reasonable water control. 4. The combined application of calcium, silica, and magnesium(as a fused magnesium phosphate. the Kyun-gi Chemical Co. products.) with water control, although under conditions of large amount application of nitrogen, was found to be increased the maturing rate. 5. In the plots of water control, the number of roots per one volume were less than that of the continuous flooding plots, but the weight per root was heavier than the flooding plot ones. 6. Improvement of the present native culture method could effectively increase paddy rice yield.

  • PDF

Trend and Further Research of Rice Quality Evaluation (쌀의 품질평가 현황과 금후 연구방향)

  • Son, Jong-Rok;Kim, Jae-Hyun;Lee, Jung-Il;Youn, Young-Hwan;Kim, Jae-Kyu;Hwang, Hung-Goo;Moon, Hun-Pal
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47
    • /
    • pp.33-54
    • /
    • 2002
  • Rice quality is much dependent on the pre-and post harvest management. There are many parameters which influence rice or cooked rice qualitys such as cultivars, climate, soil, harvest time, drying, milling, storage, safety, nutritive value, taste, marketing, eating, cooking conditions, and each nations' food culture. Thus, vice evaluation might not be carried out by only some parameters. Physicochemical evaluation of rice deals with amy-lose content, gelatinizing property, and its relation with taste. The amylose content of good vice in Korea is defined at 17 to 20%. Other parameters considered are as follows; ratio of protein body-1 per total protein amount in relation to taste, and oleic/linoleic acid ratio in relation to storage safety. The rice higher Mg/K ratio is considered as high quality. The optimum value is over 1.5 to 1.6. It was reported that the contents of oligosaccharide, glutamic acid or its derivatives and its proportionalities have high corelation with the taste of rice. Major aromatic compounds in rice have been known as hexanal, acetone, pentanal, butanal, octanal, and heptanal. Recently, it was found that muco-polysaccharides are solubilized during cooking. Cooked rice surface is coated by the muco-polysaccharide. The muco-polysaccharide aye contributing to the consistency and collecting free amino acids and vitamins. Thus, these parameters might be regarded as important items for quality and taste evaluation of rice. Ingredients of rice related with the taste are not confined to the total rice grain. In the internal kernel, starch is main component but nitrogen and mineral compounds are localized at the external kernel. The ingredients related with taste are contained in 91 to 86% part of the outside kernel. For safety that is considered an important evaluation item of rice quality, each residual tolerance limit for agricultural chemicals must be adopted in our country. During drying, rice quality can decline by the reasons of high drying temperature, overdrying, and rapid drying. These result in cracked grain or decolored kernel. Intrinsic enzymes react partially during the rice storage. Because of these enzymes, starch, lipid, or protein can be slowly degraded, resulting in the decline of appearance quality, occurrence of aging aroma, and increased hardness of cooked rice. Milling conditions concerned with quality are paddy quality, milling method, and milling machines. To produce high quality rice, head rice must contain over three fourths of the normal rice kernels, and broken, damaged, colored, and immature kernels must be eliminated. In addition to milling equipment, color sorter and length grader must be installed for the production of such rice. Head rice was examined using the 45 brand rices circulating in Korea, Japan, America, Australia, and China. It was found that the head rice rate of brand rice in our country was approximately 57.4% and 80-86% in foreign countries. In order to develop a rice quality evaluation system, evaluation of technics must be further developed : more detailed measure of qualities, search for taste-related components, creation and grade classification of quality evaluation factors at each management stage of treatment after harvest, evaluation of rice as food material as well as for rice cooking, and method development for simple evaluation and establishment of equation for palatability. On policy concerns, the following must be conducted : development of price discrimination in conformity to rice cultivar and grade under the basis of quality evaluation method, fixation of head rice branding, and introduction of low temperature circulation.