• Title/Summary/Keyword: Soil map

Search Result 565, Processing Time 0.035 seconds

Development of Detailed Soil Resistivity Map(1/5000) in Kwachon (과천지역의 상세 토양비저항도(1/5000) 작성)

  • Lee, H.G.;Kim, D.K.;Bae, J.H.;Ha, T.H.;Jeong, S.H.;Choi, S.B.
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.315-317
    • /
    • 1999
  • Soil resistivity has a relation with the corrosion of underground buried structures as a water pipeline, gas pipeline and power cable casing. And it's a main factor in the cathodic protection and earth design. This paper presents soil resistivity maps each depth through measuring the soil resistivity in Kwachon, Kyonggi province. Also examines the soil resistivity characteristics on a change of temperature, moisture content and ion content in the laboratory.

  • PDF

Spectra assessment for the soil Hg contamination

  • Wu, Yunzhao;Chen, Jun;Wu, Xinmin;Tian, Qingjiu;Ji, Junfeng
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1368-1370
    • /
    • 2003
  • Conventional methods investigating soil Hg contamination are time-consuming and expensive. A quicker method is developed to predict soil Hg content with convolved HyMap, ASTER, and TM spectra. The prediction accuracy for each sensor is satisfactory and similar. It suggests that low spectral resolution is not a limitation for predicting soil Hg content. Correlation analysis reveals that Hg -sorption by iron oxides is the mechanism by which to predict spectrally featureless Hg with reflectance spectra. Future study with field measurements and remote sensing data is recommended.

  • PDF

PGA estimates for deep soils atop deep geological sediments -An example of Osijek, Croatia

  • Bulajic, Borko D.;Hadzima-Nyarko, Marijana;Pavic, Gordana
    • Geomechanics and Engineering
    • /
    • v.30 no.3
    • /
    • pp.233-246
    • /
    • 2022
  • In this study, the city of Osijek is used as a case study area for low to medium seismicity regions with deep soil over deep geological deposits to determine horizontal PGA values. For this reason, we propose new regional attenuation equations for PGA that can simultaneously capture the effects of deep geology and local soil conditions. A micro-zoning map for the city of Osijek is constructed using the derived empirical scaling equations and compared to all prior seismic hazard estimates for the same area. The findings suggest that the deep soil atop deep geological sediments results in PGA values that are only 6 percent larger than those reported at rock soil sites atop geological rocks. Given the rarity of ground motion records for deep soils atop deep geological layers around the world, we believe this case study is a start toward defining more reliable PGA estimates for similar areas.

Ecological Division of Habitats by Analysis of Vegetation Structure and Soil Environment -A Case Study on the Vegetation in the Kimpo Landfills and Its Periphery Region- (식생구조와 토양환경 분석을 통한 서식처의 생태학적 구분 -김포매립지와 그 근린 지역의 식생을 사례로 -)

  • Kim, Jong-Won;Yong-Kyoo Jong
    • The Korean Journal of Ecology
    • /
    • v.18 no.3
    • /
    • pp.307-321
    • /
    • 1995
  • Division of ecoregions having respective functions was attempted through quantitative and qualitative analysis on vegetation diversity, and heterogeneity and on soil environment of the study sites. Field research was carried out in a square of 81 ㎢ around Andongpo (126°38'E, 37°30'N), Kimpo-gun, Kyonggi provice. Conventional methods applied are as follows: classical syntaxonomy by the Zurich-Montpellier School, interpolation method to determine the degree of diversity, heterogeneity and distribution pattern of vegetation, and correlation analysis between soil properties and plant communities. 41 plant communities were identified and composed of 6 forests, 4 mantle and 31 herb communities including 6 saltmarsh plant communities. In a mesh, number of plant communities was highly correlated to the number of species. The highest number of plant community and species was 25 communities·km-2·mesh-1 and 381 species· km-2·mesh-1 ,and the highest value of vegetation heterogeneity was 28.1 species· community-1·mesh-1. Their lowest numbers were 4 communities·km-2·mesh-1. and 28 species·km-2·mesh-1. and 7 species·community-1·mesh-1, respectively. Contour map on vegetation diversity and heterogeneity enabled us to establish two regions; coastal and inland vegetation. Isoline 〔150〕,〔10〕and〔10〕and〔15〕on the species diversity, the community diversity and the vegetation heterogeneity, respectively, were regarded as ecolines in the study area. Cl- content was recognized as the most important factor from correlation analysis between soil properties. Ordination of sites indicated that the study area be divided into two edaphic types: inland and coastal habitats. It was considered that the extent of desalinization in soil played a major role in determining the species composition in the reclamed area. By matching edaphic division of habitats with division of vegetation structures, designation of ecoregion was endorsed. The approach of current study was suggested as an effective tool to implement an assessment of the vegetation dynamics by the disparity of natural environment and anthropogenic interferences.

  • PDF

Landslide Susceptibility Analysis and Vertification using Artificial Neural Network in the Kangneung Area (인공신경망을 이용한 강릉지역 산사태 취약성 분석 및 검증)

  • Lee, Sa-Ro;Lee, Myeong-Jin;Won, Jung-Seon
    • Economic and Environmental Geology
    • /
    • v.38 no.1
    • /
    • pp.33-43
    • /
    • 2005
  • The purpose of this study is to make and validate landslide susceptibility map using artificial neural network and GIS in Kangneung area. For this, topography, soil, forest, geology and land cover data sets were constructed as a spatial database in GIS. From the database, slope, aspect, curvature, water system, topographic type, soil texture, soil material, soil drainage, soil effective thickness, wood type, wood age, wood diameter, forest density, lithology, land cover, and lineament were used as the landslide occurrence factors. The weight of the each factor was calculated, and applied to make landslide susceptibility maps using artificial neural network. Then the maps were validated using rate curve method which can predict qualitatively the landslide occurrence. The landslide susceptibility map can be used to reduce associated hazards, and to plan land use and construction as basic data.

Assessment of Future Climate Change Impact on Soil Erosion Loss of Metropolitan Area Using Ministry of Environment Land Use Information (환경부 토지이용정보를 이용한 수도권의 미래 기후변화에 따른 토양유실 예측 및 평가)

  • Ha, Rim;Joh, Hyungkyung;Kim, Seongjoon
    • KCID journal
    • /
    • v.21 no.1
    • /
    • pp.89-98
    • /
    • 2014
  • This study is to evaluate the future potential impact of climate change on soil erosion loss in a metropolitan area using Revised Universal Soil Loss Equation(RUSLE) with land use information of the Ministry of Environment and rainfall data for present and future years(30-year period). The spatial distribution map of vulnerable areas to soil erosion was prepared to provide the basis information for soil conservation and long-term land use planning. For the future climate change scenario, the MIROC3.2 HiRes A1B($CO_2720ppm$ level 2100) was downscaled for 2040-2069(2040s) and 2070-2099(2080s) using the stochastic weather generator(LARS-WG) with average rainfall data during past 30 years(1980-2010, baseline period). By applying the climate prediction to the RUSLE, the soil erosion loss was evaluated. From the results, the soil erosion loss showed a general tendency to increase with rainfall intensity. The soil loss increased up to 13.7%(55.7 ton/ha/yr) in the 2040s and 29.8%(63.6 ton/ha/yr) in the 2080s based on the baseline data(49.0 ton/ha/yr).

  • PDF

Potential soil loss evaluation using the RUSLE/RUSLE-runoff models in Wadi Saida watershed (N-W Algeria)

  • Cherif, Kessar;Yahia, Nasrallah;Bilal, Bilssag
    • Advances in environmental research
    • /
    • v.9 no.4
    • /
    • pp.251-273
    • /
    • 2020
  • Soil degradation has become a major worldwide environmental problem, particularly in arid and semi-arid climate zones due to irregular rainfall and the intensity of storms that frequently generate heavy flooding. The main objective of this study is the use of geographic information system and remote sensing techniques to quantify and to map the soil losses in the Wadi Saida watershed (624 ㎢) through the revised universal soil loss equation model and a proposed model based on the surface erosive runoff. The results Analysis revealed that the Wadi Saida watershed showed moderate to moderately high soil loss, between 0 and 1000 t/㎢/year. In the northern part of the basin in the region of Sidi Boubkeur and the mountains of Daia; which are characterized by steep slopes, values can reach up to 3000 t/㎢/year. The two models in comparison showed a good correlation with R = 0.95 and RMSE = 0.43; the use of the erosive surface runoff parameter is effective to estimate the rate of soil loss in the watersheds. The problem of soil erosion requires serious interventions, particularly in basins with disturbances and aggressive climatic parameters. Good agricultural practices and forest preservation areas play an important role in soil conservation.

Mapping Species-Specific Optimal Plantation Sites Based on Environmental Variables in Namwon City, Korea (환경요인을 이용한 남원시의 적지적수도 제작)

  • Moon, Ga Hyun;Kim, Yong Suk;Lim, Joo Hoon;Shin, Man Yong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.2
    • /
    • pp.126-135
    • /
    • 2015
  • This study was conducted to develop a large scale map of species-specific plantation sites based on selected environmental variables such as topography, soil, and climatic factors in Namwon city. Site index equations by tree species were first regressed to 27 environmental variables that could influence the productivity of forest sites using digital forest site maps, digital climate maps, and the 5th National Forest Inventory data. Site index equations by tree species were all evaluated to estimate site productivity using 4-5 environmental variables, and the models' reliability was confirmed based on evaluation statistics. The determination coefficients of site index equations by species ranged from 0.42 to 0.76. With the site index equations, the site conditions appropriate for productive sites by species were considered to assess spatial distribution of productive areas for each species. The final map for optimal plantation in Namwon city was produced based on both site index equations and site conditions appropriate for productive sites by each species using GIS technique. Field survey was conducted to evaluate the suitability of selected species on the map of species-specific plantation sites. Results showed that the plantation map provides relatively reasonable spatial distribution of productive areas for selected species. It was revealed, however, that the sites evaluated as 'not suitable' for any tree species should be revised and complemented with additional information, especially with the site conditions appropriate for productive sites by species of interest. The outcomes of this study are expected to provide information for making customized species-specific plantation maps.

Assessment of Hydrological Impact by Tracing Long-term Land Cover Changes Using Landsat TM Imageries

  • Kim, Seong J.;Park, Geun A.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.50-52
    • /
    • 2003
  • The purpose of this study is to evaluate the hydrological impact due to temporal land cover changes by gradual urbanization of a watershed. WMS HEC-1 was adopted, and DEM with 200m resolution and hydrologic soil group from 1:50,000 soil map were prepared. Land covers of 1986, 1990, 1994 and 1999 Landsat TM images were classified by maximum likelihood method. By applying the model, watershed average CN value was affected in the order of paddy, forest and urban/residential, respectively.

  • PDF

Mapping Landslide Susceptibility Based on Spatial Prediction Modeling Approach and Quality Assessment (공간예측모형에 기반한 산사태 취약성 지도 작성과 품질 평가)

  • Al, Mamun;Park, Hyun-Su;JANG, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.3
    • /
    • pp.53-67
    • /
    • 2019
  • The purpose of this study is to identify the quality of landslide susceptibility in a landslide-prone area (Jinbu-myeon, Gangwon-do, South Korea) by spatial prediction modeling approach and compare the results obtained. For this goal, a landslide inventory map was prepared mainly based on past historical information and aerial photographs analysis (Daum Map, 2008), as well as some field observation. Altogether, 550 landslides were counted at the whole study area. Among them, 182 landslides are debris flow and each group of landslides was constructed in the inventory map separately. Then, the landslide inventory was randomly selected through Excel; 50% landslide was used for model analysis and the remaining 50% was used for validation purpose. Total 12 contributing factors, such as slope, aspect, curvature, topographic wetness index (TWI), elevation, forest type, forest timber diameter, forest crown density, geology, landuse, soil depth, and soil drainage were used in the analysis. Moreover, to find out the co-relation between landslide causative factors and incidents landslide, pixels were divided into several classes and frequency ratio for individual class was extracted. Eventually, six landslide susceptibility maps were constructed using the Bayesian Predictive Discriminant (BPD), Empirical Likelihood Ratio (ELR), and Linear Regression Method (LRM) models based on different category dada. Finally, in the cross validation process, landslide susceptibility map was plotted with a receiver operating characteristic (ROC) curve and calculated the area under the curve (AUC) and tried to extract success rate curve. The result showed that Bayesian, likelihood and linear models were of 85.52%, 85.23%, and 83.49% accuracy respectively for total data. Subsequently, in the category of debris flow landslide, results are little better compare with total data and its contained 86.33%, 85.53% and 84.17% accuracy. It means all three models were reasonable methods for landslide susceptibility analysis. The models have proved to produce reliable predictions for regional spatial planning or land-use planning.