• Title/Summary/Keyword: Soil hydraulic properties

Search Result 208, Processing Time 0.028 seconds

Comparison of In-Field Measurements of Nitrogen and Other Soil Properties with Core Samples (코어샘플을 이용한 질소 등 토양성분 현장 측정방법의 비교평가)

  • Kweon, Gi-Young;Lund, Eric;Maxton, Chase;Kenton, Dreiling
    • Journal of Biosystems Engineering
    • /
    • v.36 no.2
    • /
    • pp.96-108
    • /
    • 2011
  • Several methods of in-field measurements of Nitrogen and other soil properties using cores extracted by a hydraulic soil sampler were evaluated. A prototype core scanner was built to accommodate Veris Technologies commercial Vis-NIRS equipment. The testing result for pH, P and Mg were close to RPD (Ratio of Prediction to Deviation = Standard deviation/RMSE) of 2, however the scanner could not achieve the goal of RPD of 2 on some other properties, especially on nitrate nitrogen ($NO_3$) and potassium (K). In situ NIRS/EC probe showed similar results to the core scanner; pH, P and Mg were close to RPD of 2, while $NO_3$ and K were RPD of 1.5 and 1.2, respectively. Correlations between estimations using the probe and the core scanner were strong, with $r^2$ > 0.7 for P, Mg, Total N, Total C and CEC. Preliminary results for mid-IR spectroscopy showed an $r^2$ of 0.068 and an RMSE for nitrate (N) of 18 ppm, even after the removal of calcareous samples and possible N outlier. After removal of calcareous samples on a larger sample set, results improved considerably with an $r^2$ of 0.64 and RMSE of 6 ppm. However, this was only possible after carbonate samples were detected and eliminated, which would not be feasible under in-field measurements. Testing of $NO_3$ and K ion-selective electrodes (ISEs) revealed promising results, with acceptable errors measuring soil solutions containing nitrate and potassium levels that are typical of production agriculture fields.

The Effect of Anaerobic Fermentation Treatment of Rice or Wheat bran on the Physical and Chemical property of Plastic Film House Soil (쌀겨와 밀기울의 토양 혐기발효 처리가 시설 재배지 토양의 물리 화학성에 미치는 영향)

  • Kim, Hong-Lim;Sohn, Bo-Kyun;Jung, Kang-Ho;Kang, Youn-Ku
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.6
    • /
    • pp.366-371
    • /
    • 2006
  • This study was done to assess the physical and chemical properties after anaerobic fermentation treatment which use rice bran or wheat bran in plastic film house soil. The results which investigates the change of soil physical property after treatment 150 days showed a dramatic difference. The physical properties of control soil were the bulk density $1.46Mg\;m^{-3}$, hardness $2.30Kg\;cm^{-3}$, hydraulic conductivity $4.8cm\;hr^{-1}$, water stable aggregate(>0.5mm) 6.7%. Of the soil which treatment the rice bran in comparison to control soil, bulk density and hardness was diminished 12% and 58%, respectively. hydraulic conductivity and water stable aggregate(>0.5mm) were increased 4.5 and 5.2 fold, respectively. And, in the soil which treatment the wheat bran, bulk density and hardness was diminished 14% and 67%, respectively. Hydraulic conductivity and water stable aggregate(>0.5mm) were increased 6.3 and 6.5 fold, respectively. $NO_3-N$ contents of the soil which treated the rice bran or wheat bran after treatment 20 days were diminished 98% in comparison to control soil. The decrease of $NO_3-N$ contents in the soil was investigated with the fact that it is caused by with increase of the soil-microbial biomass. EC of the soil which treated the rice bran were $1.48dS\;m^{-1}$ which was diminished 58% in comparison to control soil. That of soil which treated the wheat bran was increased $3.65dS\;m^{-1}$ in the early stage because of acetic and butyric acid. But it was reduced as under $2.0dS\;m^{-1}$ after treatment 30 days. As the conclusion the anaerobic fermentation treatment with rice or wheat bran was effective to the improvement of soil physical and salt accumulation of the plastic film house soil.

Physico-Chemical Properties of Dredged Soils as Planting Soil (식재지반 용토로서 준설토의 이화학적 특성)

  • Kim, Won-Tae;Yonn, Yong-Han
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.32 no.6 s.107
    • /
    • pp.95-102
    • /
    • 2005
  • This study was carried out to find out the heavy metal contents and the physico-chemical properties for the improvement of dredged soils which widely exist in lowlands of Korea. At first all the average heavy metal contents were close to background level and were much lower than concern level of the Soil Environment Conservation Act of Korea. And the results of physical analyses of soils showed on the average $2.46\~2.74 Mg/m^3$ in Particle density, $0.45\~2.45 kg/kg$ in soil water contents, $0.34\~0.90 Mg/m^3$ in bulk density, $0.67\~0.87m^3/m^3$ in porosity, $2.18\times10^{-5}\~1.20\times10^{-8} m/s$ in saturated hydraulic conductivity, R0.12\~0.65 m^3/m^3$ in available water contents. Finally the results of chemical analyses of soils showed on the average $6.5\~8.2\;in\; pH,\;5\~48 g/kg\;in\; OM,\;0.48\~4.51g/kg\;in\;T-N,\;19\~25mg/kg$ in available phosphate, $0.28\~11.80 dS/m\;in\;EC,\;8.7\~38.1cmol/kg$ in CEC, respectively Accordingly, the physicochemical properties of soils ought to be analyzed accurately before dredging for effective using of dredged soils. And it will be more effective, if the dredged soils are used with proper balance among each content of components with consideration to the physicochemical properties of common soils.

The Effect of Long-term Organic Matter Addition on the Physicochemical Properties of Paddy Soil (답토양(沓土壤)에서 퇴비연용(堆肥連用)이 토양(土壤)의 이화학적성질(理化學的性質)에 미치는 영향(影響))

  • Shin, Jae Sung;Shin, Yong Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.8 no.1
    • /
    • pp.19-23
    • /
    • 1975
  • In order to find out the effect of long-term annual additions of organic matter on the physico-chemical properties of paddy soil, the soil with and without compost application has been analysed. 1. There was no significant difference in the particle size distribution between compost and uncompost treatment, however, hydraulic conductivity, sedimention volume were remarkedly increased in compost. 2. Bulk density and soil strength were decreased in organic matter additions, but porosity increased. 3. Relative to Atterberg Limits, liquid limit, plastic limit, and elastic index were increased in compost. 4. Aggregate size distribution was slightly increased in additions of organic matter. 5. Regarding to chemical properties, pH, organic matter content, C.E.C. and extractable cation were increased in organic matter additions.

  • PDF

Hydraulic Properties of a Coastal Waste Dump in Pohang, Southeastern Korea (포항 지역 해안 투기 매립장의 수리 특성에 관한 연구)

  • 김윤영;강동근;이강근
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.3 no.1
    • /
    • pp.1-8
    • /
    • 1996
  • Coastal waste dump in Pohang is composed of slags and sludge of POSCO. Hydraulic parameters in the coastal waste dump are very different from those in municipal landfills and general unconsolidated or fractured aquifers. In the waste dump pumping or slug tests are not adequate for the estimation of hydraulic parameters. Time-lag and amplitude of the tidal fluctuation of groundwater table are used to determine the hydraulic parameters. Groundwater table at the groundwater observation wells is about 40 cm higher than the sea level. The contributing factors of the groundwater-rise are estimated. Vertical profile of some chemical constituents in groundwater indicates the gradual transition of the fresh groundwater at the uppermost position to the sea water at the bottom.

  • PDF

Fluctuation Features and Numerical Model for Underground Temperature in Shallow Subsurface Soil (천층 토양 내 지중온도 변동 특성과 수치모델 평가)

  • Jeong, Jaehoon;Kim, Gyoobum;Park, Hyoungki;Kim, Hyoungsoo;Kim, Taehyung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.5
    • /
    • pp.35-42
    • /
    • 2015
  • This is conducted to observe underground temperature and to analyze its change affected by climate condition and soil infiltration in the mountainous area, Yesan region, Chungcheong-namdo province. Additionally, underground temperature change is also simulated using air temperature and soil thermal properties with a numerical model. Soil temperature monitoring data acquired from each depth, 20 cm, 50 cm, and 100 cm, indicates that the data within 50 cm in depth shows peak-shaped big fluctuation directly affected by air temperature and it at 100 cm has open-shaped small fluctuation. Underground temperature variation, a difference between high and low values, during monitoring period is weakly proportional to hydraulic conductivity of the sediment and it is assumed that water plays a part in delivering air temperature in soil. The underground temperature estimated by a numerical model is very similar to the observed data with an average value of 0.99 cross-correlation coefficient. From the result of this study, the aquifer unsaturated hydraulic conductivity of the soil and the groundwater recharge is likely to be able to estimate with underground temperature profile calculated using a numerical model.

A Study on Clogging and Hydraulic Properties for Drain Filters of Tunnels (터널배수재 필터의 폐색 및 수리적 특성에 관한 연구)

  • 문준석;한봉수;장연수;이두화
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.111-115
    • /
    • 2001
  • Durability of tunnel drains is important, because the accumulation of groundwater around the tunnel due to clogging of filter or reduction of discharge capacity of drain causes reduction of the life time of tunnel linings. In this paper, clogging and discharge capacity of drain and filter of tunnels are evaluated using a gradient ratio test and filter design criteria. The results of the gradient ratio test showed that gradient ratio(GR) is high when fine content is high in the soil samples and equivalent opening size(EOS) of filter materials is small. Measured GR was less than allowable critical gradinet ratio : 3.0, which is the clogging criteria of U.S. Army Corps of Engineers.

  • PDF

A Study on Soil Characteristics of Paddy Fields with Re-established Soils

  • Sonn, Yeon-Kyu;Moon, Yong-Hee;Zhang, Yong-Seon;Jung, Kang-Ho;Cho, Hye-Rae;Hyun, Byung-Keun;Shin, Kook-Sik;Han, Kyeong-Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.3
    • /
    • pp.194-204
    • /
    • 2015
  • Six study sites in Gumi, Goryeong in Gyeongbuk province and Naju in Jeonnam province were selected to investigate soil properties of poorly drained horizons in paddy soils. The horizons were re-established layers which were parent material layers originated from fluvial deposits. Topsoil layers were differentiated from piled parent materials while soil structure of the topsoil layer was massive with striated microstructure. Compaction at soil re-establishment and a lack of structure and aggregate development in these soils may cause the limitation of vertical water movement and result in poorly drained horizons. Soil samples were taken from paddy fields with top soils of sandy loam, silt loam and silty clay loam and re-established soils of coarse and fine texture. The samples were taken from each horizon for the analyses of soil chemical and mineral properties. Soils with re-established soils of coarse texture had greater amounts of sands from top soil texture distributions, while soils with fine texture had greater amounts of silts. Chemical properties of top soils were analyzed from rice cultivated soils at the time of re-establishments and one year after the re-establishments. The coarse texture of the re-established horizons decreased in EC values from 0.23 to $0.11(dS\;m^{-1})$, available phosphate values from 112 to $54(mg\;kg^{-1})$, and exchangeable Ca values from 6.6 to $4.9(cmol_c\;kg^{-1})$. On the other hand, soils with fine texture showed decrease only in pH and exchangeable Ca values. Especially, organic matter and available phosphate contents showed heterogeneous distributions from each horizon. This result may be caused by mixture of plough layer and subsurface layer during and consolidation. Hydraulic conductivity values were low at the boundaries of top soil and parent material layers except SL/coarse soil. Soil microstructure was massive structure without soil clods or pores and showed striated structure. Therefore, re-established paddy fields with fluvial deposits as parent material layers showed limited vertical movements of soil water because of occurrence of compacted layers and less-development of soil clods and aggregates.

Changes in Physical and Chemical Properties of Sandy Loam Soils by Hematite Addition (적철석 첨가에 의한 사질양토의 물리·화학적 특성변화)

  • Kim, Jae Gon;Dixon, Joe B.;Moon, Hi-Soo
    • Economic and Environmental Geology
    • /
    • v.31 no.4
    • /
    • pp.291-296
    • /
    • 1998
  • Pedogenic hematite is a well known agent for sink of pollutants and nutrients and for aggregation of particles in soils. Changes in physical and chemical properties of two sandy loam soils (Anahuac and Crowley soils) from the Southern Coastal Plain, the United States of America, were tested after adding finely ground crystalline hematite prepared for drilling fluid weighting material. There was an increase in hydraulic conductivity (HC) of the soils with addition of up to 3% by weight of hematite but a decrease in HC with addition of more hematite. The aggregate stability (AS) of the soils was not affected by adding hematite. Anahuac soil with higher content of organic matter and lower sodium adsorption ratio (SAR) had higher values of HC and AS than Crowley soil. Adding hematite also resulted in a slight increase in zinc (Zn) adsorption by the soils, but had no influence on the adsorption of phosphate.

  • PDF

Development of Bentonite Composite Liners for Waste Landfill Sites (폐기물매립지 침출수 누출방지용 벤토나이트 복합라이너 개발)

  • Choi, Woo-Zin;Jin, Sung-Ki;Ha, Hun-Jung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.1 no.1
    • /
    • pp.65-70
    • /
    • 2000
  • Recently, soil-bentonite mixtures are frequently used as impervious liners for waste disposal sites. In the present work, bentonite composite liner systems have been developed by utilizing Korean zeolitic bentonites. The geomechanical properties of the liner systems, such as strength hydraulic conductivity, etc. have also been studied. The laboratory and field test results showed that uniaxial strengths of the system were improved by addition of bentonite and CaO-based additive to the upper and lower layer of the liner systems, respectively. Hydraulic conductivity values measured on field liner systems showed less $1{\times}10^{-3}cm/s$, which is considered to be minimum regulation requirement for waste disposal sites.

  • PDF