• Title/Summary/Keyword: Soil erosion loss

Search Result 239, Processing Time 0.025 seconds

Estimating and Analysis of Soil Loss from Upland Watershed Using WEPP Model (WEPP 모형을 이용한 밭유역의 토양 유실량 추정 및 분석)

  • Kang, Min-Goo;Park, Seung-Woo;Son, Jung-Ho;Kang, Moon-Sung
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.85-88
    • /
    • 2002
  • This paper presents the result of the Water Erosion Prediction Project(WEPP) watershed scale model's application for prediction of sediment yield from a watershed which is comprised of hillslopes and channels and analyses of the soil loss from hillslopes and channels with crop practice and shape. To evaluate the model's application, the model is applied to a watershed that comprised of six hillslope and one channel, and the result was a good agreement with the observed values. The soil loss from hillslope was increased as the hills lope was under fallow conditions and slope length was longer. The soil loss from the channel was increased at the downstream for the concentration of flow.

  • PDF

Research Trends on Soil Erosion Control Engineering in North Korea (북한의 사방공학 분야 연구동향 분석)

  • Kim, Kidae;Kang, Minjeng;Kim, Dongyeob;Lee, Changwoo;Woo, Choongshik;Seo, Junpyo
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.4
    • /
    • pp.469-483
    • /
    • 2019
  • North Korea has experienced floods and sediment-related disasters annually since the 1970s due to deforestation. It is of paramount importance that technologies and trends related to forest restoration and soil erosion control engineering be properly understood in a bid to reduce damage from sediment-related disasters in North Korea, and to effect national territorial management following unification. This paper presents a literature review and bibliometric analysis including 146 related articles published in North Korea. First, we analyzed the textual characteristics of the articles. We then employed the VOSviewer software package to classify the research topic and analyzed this topic based on the time change. The results showed that articles on the topic have consistently increased since the 1990s. In addition, research related to soil erosion control engineering has been classified into four subjects in North Korea: (i) assessment of hazard area on soil erosion and soil loss, sediment related-disasters; (ii) hydraulic and hydrologic understanding of forests; (iii) reasonable construction of soil erosion control structures; and (iv) effects and management plan of soil erosion control works. The proportion of research related to the (ii) hydraulic and hydrologic understanding of forests had been significant during the reign of Kim Ilsung. However, the proportion of research related to the (i) assessment of hazard area on soil erosion and soil loss, sediment-related disasters, increased during the reign of Kim Jongil and Kim Jongun. Using these results, our analysis indicated that an interest in and need for soil erosion control engineering in North Korea has continually increased. The results of this study are expected to serve as a basis for preparing forestry cooperation between North and South Korea, and to serve as essential data for better understanding soil erosion control engineering in North Korea.

A Comparative Analysis of Annual Surface Soil Erosion Before and After the River Improvement Project in the Geumgang Basin Using the RUSLE (RUSLE을 활용한 금강 수변지역의 하천정비사업 전·후의 연간 표토침식량 변화 비교분석)

  • Kim, Jeong-Cheol;Choi, Jong-Yun;Lee, Sunmin;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_4
    • /
    • pp.1351-1361
    • /
    • 2019
  • In this study, the annual surface soil erosion amount of before (2007 year) and after (2015 year) the river improvement projects were calculated using RUSLE (Revised Universal Soil Loss Equation) in the Geumgang basin (Daecheong-Dam to Geumgang Estuary-Bank). After the results were classified into five classes, the results were compared and analyzed with the results of the change in the land cover. In order to generate each factor of RUSLE, various spatial information data, such as land cover maps for 2007 and 2015 years, national basic spatial information, soil map, and average annual precipitation data were utilized. The results of the analysis are as follows: 1) annual surface soil erosion in the study area increased the area of class 1 in 2015 years compared to 2007, 2) the area of class 2, 3 and 5 decreased, 3) the area of class 4 increased. It is believed that the average annual amount of surface soil erosion decreased in most areas due to the reduction of annual average precipitation, the formation of ecological parks, the expansion of artificial facilities, and the reduction of illegal farmland.

A Study on Soil loss in Forest fire area (산불발생지역에서의 토양유실량에 관한 연구)

  • Yang, In-Tae;Park, Jae-Hoon;Chun, Ki-Sun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.11 no.2 s.25
    • /
    • pp.11-16
    • /
    • 2003
  • Soil loss by the rains has effect on natural environment. But It is difficult to find out the data that is surveyed in watershed. In this paper, we choose USLE erosion model, which could be connected easily with GSIS and available generally, and extracted factors which is entered model by using GSIS spatial analysis method. Especially, As revised USLE model, It should be applied in watershed and as it calculated soil loss before Idlest fire and behind, it analysed the degree that it have an effect on soil loss. As each analyzed factors and the result of soil loss estimate consist of 22m-pixel size, we could identify soil loss by each pixel and distribution pattern.

  • PDF

Soil Erosion and Sediment Yield Reduction Analysis with Land Use Conversion from Illegal Agricultural Cultivation to Forest in Jawoon-ri, Gangwon using the SATEEC ArcView GIS (SATEEC ArcView GIS를 이용한 홍천군 자운리 유역 임의 경작지의 산림 환원에 따른 토양유실 및 유사저감 분석)

  • Jang, Won-Seok;Park, Youn-Shik;Kim, Jong-Gun;Kim, Ik-Jae;Mun, Yu-Ri;Jun, Man-Sig;Lim, Kyoung-Jae
    • Journal of Environmental Policy
    • /
    • v.8 no.1
    • /
    • pp.73-95
    • /
    • 2009
  • The fact that soil loss causing to increase muddy water and devastate an ecosystem has been appearing upon a hot social and environmental issues which should be solved. Soil losses are occurring in most agricultural areas with rainfall-induced runoff. It makes hydraulic structure unstable, causing environmental and economical problems because muddy water destroys ecosystem and causes intake water deterioration. One of three severe muddy water source areas in Soyanggang-dam watershed is Jawoon-ri region, located in Hongcheon county. In this area, many cash-crops are planted at illegally cultivated agricultural fields, which were virgin forest areas. The purpose of this study is to estimate soil loss with current land uses(including illegal cash-crop cultivation) and soil loss reduction with land use conversion from illegal cultivation back to forest. In this study, the Sediment Assessment Tool for Effective Erosion Control(SATEEC) ArcView GIS was utilized to assess soil erosion. If the illegally cultivated agricultural areas are converted back to forest, it would be expected to 17.42% reduction in soil loss. At the Jawoon-ri region, illegally cultivated agricultural areas located at over 30% and 15% slopes take 47.48 ha(30.83%) and 103.64 ha(67.29%) of illegally cultivated agricultural fields respectively. If all illegally cultivated agricultural fields are converted back to forest, it would be expected that 17.41% of soil erosion and sediment reduction, 10.86% reduction with forest conversion from 30% sloping illegally agricultural fields, and 16.15% reduction with forest conversion from 15% sloping illegally agricultural fields. Therefore, illegally cultivated agricultural fields located at these sloping areas need to be first converted back to forest to maximize reductions in soil loss reduction and muddy water outflow from the Jawoon-ri regions.

  • PDF

Runoff of Endosulfan by Rainfall Simulation and from Soybean-grown Field Lysimeter (인공강우와 콩재배 포장 라이시메타를 이용한 endosulfan의 유출량 평가)

  • Kim, Chan-Sub;Lee, Hee-Dong;Ihm, Yang-Bin;Im, Geon-Jae
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.4
    • /
    • pp.343-350
    • /
    • 2007
  • Three different experiments were carried out to investigate the runoff and erosion losses of endosulfan from sloped-field by rainfall. The mobility of endosulfan and which phase it was transported by were examined in adsorption study, the influence of rainfall pattern and slope degree on the pesticide loss were evaluated in simulated rainfall study, and the pesticide losses from soybean-grown field comparing with bare soil were measured in field lysimeter study. Adsorption parameter (K) of endosulfan ranged from 77 to 131 by adsorption method and K values by the desorption method were higher than those by the adsorption method. By the SSLRC's classification for pesticide mobility endosulfan was classified as non-mobile class ($K_{oc}>4,000$). Runoff and erosion loss of endosulfan by three rainfall scenarios ranged from 3.4 to 5.6%and from 4.4 to 15.6%of the amount treated. Endosulfan residues were mainly remained at the top 5 cm of soil depth after the simulated rainfall study. Pesticide loss in case of 30%-slope degree ranged from 0.6 to 0.9 times higher than those in case of 10%-slope degree. The difference of pesticide runoff loss was related with its concentration in runoff water and the difference of pesticide erosion loss would related closely with the quantity of soil eroded. Endosulfan losses from a series of lysimeter plots in sloped land by rainfall ranged from 5 to 35% of the amount treated. The erosion rate of endosulfan from soybean-plots was 66% of that from bare soil plots. The effect of slope conditions was not great for runoff loss, but was great for erosion loss as increasing to maximum $4{\sim}12$ times with slope degree and slope length. The peak runoff concentration of endosulfan in soybean-plots and bare soil plots ranged from 8 to 10 and from 7 to $9{\mu}gL^{-1}$ on nine plots with different slope degree and slope length. Therefore the difference of the peak runoff concentrations between bare soil plots and soybean-plots were not great.

Modelling land degradation in the mountainous areas

  • Shrestha, D.P.;Zinck, J.A.;Ranst, E. Van
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.817-819
    • /
    • 2003
  • Land degradation is a crucial issue in mountainous areas and is manifested in a variety of processes. For its assessment, application of existing models is not straightforward. In addition, data availability might be a problem. In this paper, a procedure for land degradation assessment is described, which follows a four-step approach: (1) detection, inventory and mapping of land degradation features, (2) assessing the magnitude of soil loss, (3) study of causal factors, and (4) hazard assessment by applying decision trees. This approach is applied to a case study in the Middle Mountain region of Nepal. The study shows that individual mass movement features such as debris slides and slumps can be easily mapped by photo interpretation techniques. Application of soil loss estimation models helps get insight on the magnitude of soil losses. In the study area soil losses are higher in rainfed crops on sloping terraces (highest soil loss is 32 tons/ha/yr) and minimal under dense forest and in irrigated rice fields (less than 1 ton/ha/yr). However there is high frequency of slope failures in the form of slumps in the rice fields. Debris slides are more common on south-facing slopes under rainfed agriculture or in degraded forest. Field evidences and analysis of causal factors for land degradation helps in building decision trees, the use of which for modelling land degradation has the advantage that attributes can be ranked and tested according to their importance. In addition, decision trees are simple to construct, easy to implement and very flexible in adaptations.

  • PDF

Analysis of Effects on Soil Erosion Reduction of Various Best Management Practices at Watershed Scale (최적관리기법에 따른 토양유실 저감 효과 유역단위 분석)

  • Lee, Dong Jun;Lee, Ji Min;Kum, Donghyuk;Park, Youn Shik;Jung, Younghun;Shin, Yongchul;Jeong, Gyo-Cheol;Lee, Byeong Cheol;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.6
    • /
    • pp.638-646
    • /
    • 2014
  • Soil erosion from agricultural fields leads to various environmental problems weakening the capabilities of flood control and ecosystem in water bodies. Regarding these problems, Ministry of Environment of South-Korea prepared various structural and non-structural best management practices (BMPs) to control soil erosion. However, a lot of efforts are required to monitor and develop BMPs. Thus, modeling techniques have been developed and utilized for these issues. This study estimated the effectiveness of BMPs which are a vegetation mat with infiltration roll and Roll type vegetation channel using Soil and Water Assessment Tool (SWAT) model through the adjustment of the conservation practice factors, P factors, for Universal Soil Loss Equation which were calculated by monitoring data collected at the segment plots. Each BMP was applied to the areas with slopes ranged from 7% to 13% in the Haeanmyeon watershed. As a result of simulation, the vegetation mat with infiltration roll and Roll type vegetation channel showed 55% and 59% efficiency of soil erosion reduction, respectively. Also, Vegetation mat with infiltration roll and Roll type vegetation channel showed each 11.2% and 11.8% efficiency in reduction of sediment discharge. These roll type vegetation channel showed greater efficiency of soil erosion reduction and sediment discharge. Based on these results, if roll type vegetation channel is widely used in agricultural fields, reduction of soil erosion and sediment discharge of greater efficiency would be expected.

A CASE STUDY OF GROUND CAVE-IN DUE TO SUBSURFACE EROSION IN OLD LAND FILL

  • Kuwano, Reiko;Kohata, Yukihiro
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09c
    • /
    • pp.113-116
    • /
    • 2010
  • Ground cave-in is usually initiated by the formation of cavity within the ground due to soil loss. When the location of the cavity is deep in the ground, the detection of the cavity is not easy. Then it is possible that the hidden cavity expands for a long time to eventually cause sudden large-scale collapse. A case of large scale ground collapse in the old fill ground was studied and described in this paper. The underground cavity appeared to be caused by subsurface erosion deep in the ground and to expand/extend upward till it was ended by the catastrophic ground failure. It highlighted the importance of proper drainage work in a large scale land fill.

  • PDF

Assessment of Soil Loss Estimated by Soil Catena Originated from Granite and Gneiss in Catchment (소유역단위 화강암/편마암 기원 토양 연접군(catena)에 따른 토양 유실 평가)

  • Hur, Seung-Oh;Sonn, Yeon-Kyu;Jung, Kang-Ho;Park, Chan-Won;Lee, Hyun-Hang;Ha, Sang-Keun;Kim, Jeong-Gyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.5
    • /
    • pp.383-391
    • /
    • 2007
  • This study was conducted for an assessment through the estimation of soil loss by each catchment classified by soil catena. Ten catchments, which are Geumgang21, Namgang03, Dongjincheon, Gapyongcheon01, Gyongancheon02, Geumgang16, Byongsungcheon01, Daesincheon, Bukcheon02, Youngsangang08, were selected from the hydrologic unit map and the detailed soil digital map (1:25,000) for this study. The catchments like Geumgang21, Namgang03, Dongjincheon, Gapyongcheon01 and Gyongancheon02 were mainly composed with soils originated from gneiss. The catchments like Geumgang16, Byongsungcheon01, Daesincheon, Bukcheon02 and Youngsangang08 were mainly composed with soils originated from granites. The grades, which are divided into seven grades with A(very tolerable), B(tolerable), C(moderate), D(low), E(high), F(severe), G(very severe), of soil erosion estimated by USLE in catchments were distributed in most A and B because of paddy land and forestry. In detailed, the soil erosion grade of catchments mainly distributing soils originated from gneiss showed more the distribution of B and C than it of catchments mainly distributing soils originated from granites. The reason of results would be derived from topographic characteristics of soils originated from gneiss located at mountainous. The soil loss according to soil catena linked with Songsan and Jigok series, which are soils originated from gneiss was calculated with $7.66ton\;ha^{-1}\;yr^{-1}$. The soil loss of Geumgang16, Byongsungcheon01, Daesincheon, Bukcheon02 which have the soil catena linked with Samgak and Sangju soil series originated from granite, was calculated with $5.55ton\;ha^{-1}\;yr^{-1}$. The soil loss of Youngsangang08 which have the soil catena linked with Songjung and Baeksan soil series originated from granite was calculated with $9.6ton\;ha^{-1}\;yr^{-1}$, but the conclusion on soil loss in this kind of soil catena would be drawn from the analysis of more catchments. In conclusion, the results of this study inform that the classification of soil catena by catchments and estimation of soil loss according to soil catena would be effective for analysis on the grade of non-point pollution by soil erosion in a catchment.