• Title/Summary/Keyword: Soil environment policy

Search Result 155, Processing Time 0.025 seconds

Priority Assessment for Remediation of Heavy Metals Closed/Abandoned Mine Areas Using Pollution Indexes

  • Kim Hee-Joung;Yang Jae-E.;Park Byung-Kil;Kong Sung-Ho;Lee Jai-Young;Jun Sang-Ho
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.183-193
    • /
    • 2006
  • Several metalliferous and coal mines, including Seojin and Okdong located at the Kangwon province, were abandoned or closed since 1989 due to the mining industry promotion policy and thus disposed an enormous amount of mining wastes without a proper treatment facilities, resulting in water and soil pollution in the downstream areas. However, no quantitative assessment was made on soil and water pollution by the transport of mining wastes such as acid mine drainage, mine tailing, and rocky waste. In this research, total and fractional concentrations of heavy metals in mining wastes were analyzed and accordingly the degree of water and soil pollutions in the stream area were quantitatively assessed employing the several pollution indices. Concentrations of Ni, Cd, and Pb in soils near the abandoned coal mine areas were 1,240.0, 25.0 and 1,093.0 mg/kg, respectively, and these concentrations were higher than those in soils near the closed metalliferous mine areas. Also Cu concentrations in soils near the tailing dams were about 1967 mg/kg, which is considered as very polluted level. Results demonstrated that soil at the abandoned mine areas were highly contaminated by AMO, tailing, and effluents of the mining wastes. Therefore, a prompt countermeasure on the mining waste treatment and remediation of the codntaminated water and soil should be made to the abandoned or closed metalliferous and coal mines located at the abandoned mine area.

  • PDF

An option to provide water and fertilization for rice production in alkaline soil: fertigation with slow release fertilizers (SRFs)

  • Young-Tae Shin;Kangho Jung;Chung-Keun Lee;Jwakyung Sung
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.4
    • /
    • pp.923-931
    • /
    • 2022
  • An increasing global population requires a greater food supply, and accordingly there is demand for enhanced production of rice, as a major crop plant that covers half of the world's population. Rice production in arid area is extremely difficult due to poor soil fertility, salinity, deficit of irrigation water, and weather conditions. The aim of the present study was to determine whether various fertilization recipes could provide a countermeasure to allow rice production while also providing soil amendment such as soil pH adjustment. The study was conducted at an experimental field of the United Arab-Emirates (UAE) from January to April, 2022. Rice seedlings (cv. Asemi, alkaline-resistant) were transplanted in plastic containers, and different types of water and nutrient managements were employed as follows: water management (flooding and aerobic for NPKs treatment group) and nutrient management (NPKs, slow release fertilizers [SRFs] and SRFs + NPK-1 treatment groups with flooding). Water and nutrient management did not show any effect on soil pH adjustment. Rice growth was significantly enhanced in the flooding compared to the aerobic condition, whereas the effect of nutrient management clearly differed among the treatment groups, with SRFs + NPK-1 showing the best results followed by SRFs and NPKs. Most of the fertilization groups markedly accumulated soluble sugars in the shoots and grains of rice plants, but concomitantly a decrease in the roots. Overall, the level of starch showed a tendency of relatively slight perturbation by fertilization. Taken together, the results indicate that soil physical structure should be preferentially amended to find the key for suitable rice production.

Selection of Domestic Test Species Suitable for Korean Soil Ecological Risk Assessment (토양생태 위해성평가를 위한 국내 서식 토양독성 시험종 선별 연구)

  • Kim, Shin Woong;Kwak, Jin Il;Yoon, Jin-Yul;Jeong, Seung-Woo;An, Youn-Joo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.5
    • /
    • pp.359-366
    • /
    • 2014
  • For an efficient and reasonable management scheme for protecting the soil environment, a soil ecological risk assessment (ERA) method should be developed prior to utilization, based on the contemporary uses and situations of each country. The Korean environmental policy focusing on soil protection is currently accelerating the development of the soil ecological risk assessment method. The soil ERA requires toxicological data on various trophic levels in the soil environment, and ultimately uses PNEC (Predicted No Effect Concentration), which is derived from collected toxicological data. Therefore, test species that are used to generate toxicity data are essential for conducting reliable ERA. This study aimed to select domestic test species for potential use in a reliable Korean ERA. Copper (Cu) and Nickel (Ni) were identified as target substances, with toxicity data (Cu, Ni) and standard test methods being collected to determine candidate species. The candidate species were first classified by soil trophic level, and then sorted into final domestic species. Forty out of 166 domestic species were determined as potential standard test species, whereas 17 out of 120 species were determined as potential Cu and Ni test species. Finally, this study presented potential soil test species based on the characteristics of the domestic soil environment, and established a preliminary step toward developing a reliable Korean soil ERA method.

Status of Soil Remediation and Technology Development in Korea (국내 오염토양 복원 현황과 기술 동향)

  • Yang, Ji-Won;Lee, You-Jin
    • Korean Chemical Engineering Research
    • /
    • v.45 no.4
    • /
    • pp.311-318
    • /
    • 2007
  • Soil contamination in Korea has been accelerated every year. Because of their persistence and cumulative tendency in the environment, soil contaminants have potential long-term environmental and health concerns and it is estimated to cost enormous expense for clean-up. Korea government has legislated the law on conservation of soil environment in mid 1990s, and managed and treated hazardous wastes in contaminated sites as a remediation policy since then. Soil remediation technologies are classified into in-situ/ex-situ or biological/physico-chemical/thermal processes according to applied places or treatment methods, respectively. In Korea, clean-up of polluted sites has been mostly carried out at military areas, railroad-related sites and small-scale oil spilt sites. For these cases, in-situ remediation technologies such as soil vapor extraction (SVE) and bioventing were mainly used. In recent days, an environmental-friendly soil remediation emerged as a new concept - for example, a new soil remediation process using nanotechnology or molecular biological study and an integrated process which can overcome the limitation of individual process. To have better applicability of remediation technologies, comprehensive understandings about the pollutants and soil characteristics and the suitable techniques are required to be investigated. Above all, development of environmental technologies based on the sustainability accompanied by public attention can improve soil environment in Korea.

Development of Soil Organic Carbon Storage Estimation Model Using Soil Characteristics (토양 특성을 이용한 토양유기탄소저장량 산정 모형 개발)

  • Lee, Taehwa;Kim, Sangwoo;Shin, Yongchul;Jung, Younghun;Lim, Kyoung-Jae;Yang, Jae E;Jang, Won Seok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.6
    • /
    • pp.1-8
    • /
    • 2019
  • Carbon dioxide is one of the major driving forces causing climate changes, and many countries have been trying to reduce carbon dioxide emissions from various sources. Soil stores more carbon dioxide(two to three times) amounts than atmosphere indicating that soil organic carbon emission management are a pivotal issue. In this study, we developed a Soil Organic Carbon(SOC) storage estimation model to predict SOC storage amounts in soils. Also, SOC storage values were assessed based on the carbon emission price provided from Republic Of Korea(ROK). Here, the SOC model calculated the soil hydraulic properties based on the soil physical and chemical information. Base on the calculated the soil hydraulic properties and the soil physical chemical information, SOC storage amounts were estimated. In validation, the estimated SOC storage amounts were 486,696 tons($3.526kg/m^2$) in Jindo-gun and shown similarly compared to the previous literature review. These results supported the robustness of our SOC model in estimating SOC storage amounts. The total SOC storage amount in ROK was 305 Mt, and the SOC amount at Gyeongsangbuk-do were relatively higher than other regions. But the SOC storage amount(per unit) was highest in Jeju island indicating that volcanic ashes might influence on the relatively higher SOC amount. Based on these results, the SOC storage value was shown as 8.4 trillion won in ROK. Even though our SOC model was not fully validated due to lacks of measured SOC data, our approach can be useful for policy-makers in reducing soil organic carbon emission from soils against climate changes.

Suggestion for Legal Definitions of Keywords on Soil Contamination Policies in Korea (토양환경보전법의 토양오염 관련 주요 용어의 정의 및 재정립에 관한 고찰)

  • Park, Yong-Ha;Yang, Jae-E.
    • Journal of Environmental Policy
    • /
    • v.4 no.1
    • /
    • pp.39-67
    • /
    • 2005
  • In order to properly define the terms such as soil, soil contamination, soil contamination site and remediation, which are the key terms under the Soil Environment Conservation Act(SECA) in Korea, we analyzed the legal definitions of the similar key words in legislations of the developed western countries. The selected countries were the United States of America, the United Kingdom, the Netherlands, Germany, and Denmark. The legal definitions of these keywords were very much diversified due to different levels of soil contamination, as well as different industrial, social, and legal backgrounds in each country. However, fair suggestions for definitions of the key terms in SECA were derived from the comparative analyses of these countries. First and foremost, SECA should provide a definition of 'soil' which includes a concept of the natural soil layer produced from soil mineralization processes. Groundwater and sublayer of the groundwater would. be excluded in the boundary of the soil with regards to the Groundwater Act of Korea. Definition of 'soil contamination' of SECA should include a concept of risk assessment(soil contaminants, pathway, and receptors), purpose of land use, and the acquired limitation levels of soil contaminants. Soil contamination activity either industrial or anthropogenic in SECA article2-1, could be substituted for a concept of soil risk assessment. Definition of 'soil contamination site' could derive from amalgamating the concepts of i) soil contamination in conjunction with contaminants, ii) risk assessment, iii) a concept of land use, and iv) knowing limitation of contamination site designation. Definition of 'remediation of contaminated site' should include the objective, intention, action, methodology and limit of the remediation. These suggested definitions would increase the efficacy of soil environment conservation policies, which includes the survey of the potentially contaminated area, remediation, and removal of the site.

  • PDF

Development of a New Analytical Solution for Type Curves in Repeated Radial Tracer Tests Under Transient Flow Conditions (부정류 흐름 하에서 반복적인 발산 추적자 시험을 위한 표준 곡선의 새로운 수학적 해석해 개발)

  • Heejun Suk;Jize Piao;Hongil Ahn;Minjune Yang;Weon Shik Han
    • Journal of Soil and Groundwater Environment
    • /
    • v.29 no.5
    • /
    • pp.1-13
    • /
    • 2024
  • Repeated tracer tests are often conducted to improve the accuracy of parameter estimation or are sometimes inevitably performed due to mechanical issues or human errors occurred during initial tracer tests. However, residual concentrations from preceding tracer tests can interfere with the injection concentrations of subsequent tests, potentially compromising accuracy of parameter estimation in those later tests. Additionally, repeated injections and interruptions can create transient flow conditions, which have not been adequately considered to date. In this study, a new analytical solution was developed to generate a type curve for repeated tracer tests under transient flow conditions. The solution was validated through numerical simulations. By using the proposed analytical solution, the residual concentration from preceding tracer tests can be effectively accounted for, enabling more accurate parameter estimation for subsequent tracer tests under transient flow conditions.

Distributions of Chromium, Copper, and Arsenic in Soils Adjacent to Stairs, a Deck, and a Sound Barrier Constructed with a Wood Preservative CCA-Treated Timbers (방부제 CCA로 처리된 목재를 사용한 계단, 데크 및 방음벽에 인접한 토양에서 크롬, 구리 및 비소의 분포)

  • Kim He-Kap;Kim Dong-Jin;Park Jeong-Gue;Shin Yong-Seung;Hwang In-Young;Kim Yoon-Kwan
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.1
    • /
    • pp.54-64
    • /
    • 2006
  • Chromated copper arsenate (CCA), a wood preservative, has been widely used to protect wood products from attacks by bacteria, fungi and insects. However, the use of CCA is currently forbidden or limited to some applications in many countries because the toxic elements (Cr, Cu, and As) of CCA are released into the environments during outdoor uses, which may cause adverse health effects on humans and ecological systems. This study was conducted to investigate the distributions of chromium, copper and arsenic in soils adjacent to two CCA-treated wood structures. In a 7 month old pond entry structure, ten surface soil samples (0-2.5 cm) were collected at lateral distances of 0, 0.5, and 1 m from the stairway, and nine surface soil samples were collected beneath the deck. Nine top soil samples were taken from a 2 year old sound barrier structure at lateral distances of 0, 1, and 2 m. Background surface soil samples were also collected from each structure. Samples were analyzed for some physicochemical properties such as pH, electrical conductivity, organic matter content, and soil texture. Following the extraction of the elements with a microwave digestion system, samples were analyzed for Cr, Cu, and As. The concentrations of the three elements in soils adjacent to the structures were significantly elevated compared to the background levels, indicating that the elements have been leached out of the structures. Released e1ements showed lateral concentration gradients within 1 m. The elevations of the three elements in soils underneath the deck did not seem different (background-corrected concentrations: Cr, 5.01 mg/kg; Cu, 5.50 mg/kg; As, 4.91 mg/kg), while the elements in soils near the sound barrier were elevated in the order of As>Cu>Cr with measured concentrations of 49.7, 44.7 and 52.5 mg/kg, respectively. Background As, Cu, and Cr concentrations near the sound barrier were 9.88, 30.8, and 46.5 mg/kg, respectively. These results showed that CCA constituents are released into the environment and it is suggested that risk assessment need to be conducted to investigate harmful effects of the released elements on humans and ecological systems.

Selection of agricultural income crops cultivation suit-land using GIS (지리정보시스템을 이용한 농촌소득작목재배적지선정)

  • 허문희;피의섭;이도한;이석현
    • Spatial Information Research
    • /
    • v.2 no.1
    • /
    • pp.75-83
    • /
    • 1994
  • Many application using GIS has been carried out by governments and public office, and Cungbuk province has produced very effective results on agricultural income crops cultivation suit-land, since executed local autonomy system imported GIS for cope with variation of local administration environment, science of administration. The result on the selection of agricultural cultivation suit-land, in fact, offered us very useful information of the policy establishment concern with agriculture. In this study, we had analysed suit elements of cultivation : soil texture, soil drain, soil slope, soil depth and pH. ARC/INFO and ERDAS systems were used for this study.

  • PDF