• Title/Summary/Keyword: Soil disturbance

Search Result 239, Processing Time 0.027 seconds

Evaluation of Ground Characteristic Using the New Developed Screw Plate Load Test Device (새롭게 개발된 스크류재하시험장치를 이용한 지반특성 파악)

  • Lee, Nam-Woo;Hwang, Woong-Ki;Choi, Yong-Kyu;Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.3
    • /
    • pp.5-17
    • /
    • 2011
  • Sampling disturbance can often introduce considerable errors in the laboratory estimation of geotechnical properties of soils. Accordingly, it causes inappropriative results in analysing field behavior. Therefore, a screw plate load test, one of in-situ test technique, is developed in this study, because in-situ testing techniques have advantages for the estimation of reliable geotechnical parameters. The screw plate load test, which was modified from the plate load test, conducts an experiment underneath ground by inserting a spiral type of auger screw. In this study, the structure and characteristics of the screw plate load test device are introduced in detail and the reliability of the device is examined through the analysis of the laboratory test results.

Trail and Campground Deteriorations and Use Impact on their Natural Environment in Mt. Kaya National Park (가야산국립공원의 등산로 및 야영장 훼손과 주변 환경에 대한 이용영향)

  • 권태호;오구균;정남훈
    • Korean Journal of Environment and Ecology
    • /
    • v.3 no.1
    • /
    • pp.81-94
    • /
    • 1989
  • Use impacts to trail and campground deteriorations and their changes of natural environment were studied in Mt. Kaya National Park in 1989. The entire width, bare width and maximum depth of trail as the trail condition were significantly greater on the more heavily used trail. Deteriorations of trail which were surveyed at the total of 51 were significantly different from those of non-deteriorated points. The changes of soil and vegetation of trailsides were not found at a uniform tendency but could be more clearly grouped by the types of user's disturbance, and use impact on trailside had reached 15m inside of forest. Percentage of area for Class 5 in campsite was about 36% and about 69% of campsite area was more severe than Class 3. Recreational activities retarded the diameter growth of trees in campsite and accelerated the different composition of species. Soil and vegetative factors adapted to understand the difference of use amount and the realm of use impact could be sorted. The realm influenced by user's disturbance was about 50m from the core of campsite. Fraxinus rhynchophylla, Rhus trichocarpa, Symplocos chinensis for. pilosa and Stephanandra incisa were considered as the tolerant species to user's impact.

  • PDF

Physicochemical Characteristics and Microbial Activity in the Various Urban Soils (도시에서 다양한 토양의 물리화학적 특성과 미생물 활성)

  • Kong, Hak-Yang;Cho, Kang-Hyun
    • The Korean Journal of Ecology
    • /
    • v.23 no.5
    • /
    • pp.369-375
    • /
    • 2000
  • Although urban soils must be well understood in order to ensure their conservation and optimum use, these intensively managed and disturbed soils have not been extensively investigated up to now. Urban soils from forest, lawn, streetside, and bare ground and under pavement in Inchon had high bulk density as a result of widespread trampling-induced soil compaction. The various urban soils including forests showed lower water content and higher temperature as compared with rural forest soil. Chemically, soils from urban areas had an unusual neutral pH and low organic matter content. Total bacterial numbers in urban soils was only 5∼50% of that in the rural forest soil. An analysis of stepwise multiple regression revealed that soil organic matter was the most important predictor variable on total bacterial number. The dehydrogenase activity of most urban soils was not significantly different from that of rural forest soil, whereas the microbial activity of soils under pavement was lower. Our investigations show that inadequate organic matter of highly compacted soils has adversely affected the abundance of microorganisms involving nutrient cycling in urban soils.

  • PDF

Sap Temperature Distribution of the Xylem and Leaf Water Status of Apple Trees in Relation to Soil Oxygen Diffusion Rates

  • Ro, Hee-Myong
    • Journal of Applied Biological Chemistry
    • /
    • v.43 no.3
    • /
    • pp.170-175
    • /
    • 2000
  • A pot-lysimeter experiment was conducted with 3-year-old 'Tsugaru' apple (Malus domestica Borkh) trees to examine the changes in oxygen diffusion rate (ODR) with lateral flow velocity of water through soil. The influence of lateral water flow velocity on water relations and elemental content in leaf, and sap temperature distribution patterns of the xylem of trees were also determined. Trees were grown under four soil water regimes: (1) fast laterally flowing (FWT, $2.50{\times}10^{-4}cm\;s^{-1}$), (2) slow laterally flowing (SWT, $0.25{\times}10^{-4}cm\;s^{-1}$), and (3) stagnant water table (WLT) at 60-cm, and (4) drip-irrigation at -40 kPa of soil matric potential as a control. The rate of $O_2$ diffusion converged near $2{\times}10^{-3}g\;m^{-2}\;min^{-1}$ for FWT and control soils, but decreased below $1{\times}10^{-3}g\;m^{-2}\;min^{-1}$ 40 days after treatment (DAT) for WLT soils. For SWT soils, however, the ODR at 15 cm below the soil surface was similar to that of control, but at 45 cm below the soil surface, ODR was similar to that of the WLT treatment. Leaf water potential of FWT and SWT plants was similar to that of control plants, but the values for SWT plants declined by 98 DAT. Leaf water potential of WLT plants decreased from -1.86 MPa (9 DAT) to -2.41 MPa (59 DAT) and finally down to -2.70 MPa. The sap temperature measured at 1100-hr was lowest at top and highest at bottom for FWT and control plants, but this pattern of SWT and WLT plants was disturbed from 29 DAT. However, for SWT plants, such thermal disturbance of sap temperature disappeared from 63 DAT.

  • PDF

A Study on Consolidation Characteristics by Considering the Initial Radial Compression at Sand Pile Adjacent Ground (샌드파일 주변지반에서 초기 방사방향 압축에 의한 압밀특성 연구)

  • 천병식;여유현
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.649-656
    • /
    • 2000
  • Consolidation of the ground surrounding the sand piles is delayed by well resistance and smear effect. This study is executed to understand the factors that affect the characteristics of consolidation. This was accomplished by utilizing the estimated and measured values of the soil properties through the monitoring of the ground surrounding the sand piles. When it is assumed that the horizontal coefficient is equal to the vertical coefficient of consolidation, the estimated values is exceedingly similar to the measured values. The properties of the initially disturbed soil by the sand pile installation seemed to improve through the process of consolidation with the passage of time. From the results of the analysis of the settlement measurement, the measured values occurred about 60~90% of the predicted values. Considering the initial radical compression deformation, according to the theory of cavity expansion, the difference between the two appears to be in good agreement. In this study, to understand the behavioral characteristics of the ground surrounding the sand piles requires estimation through considering the initial radial compression as well as smear effect of the soil disturbance and well resistance.

  • PDF

A Case Study on the Application of EPS Construction Method Considering Abutment Displacement in Soft Ground (연약지반에서의 교대변위를 고려한 EPS공법의 적용사례 연구)

  • Kang, Hee-June;Oh, Ill-Rok;Chae, Young-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.698-705
    • /
    • 2004
  • Application of structural load on soft ground can cause lateral movement as well as ground break due to pressing and shearing of ground. Especially, abutment supported by pile foundation can make pile deformed due to lateral movement of ground in order to have harmful effect on structure. According to the result of this study, it is required to consider disturbance of weak soil layer when using lateral movement countermeasure method by EPS construction method as a result of performing study on safety review and EPS construction method with respect to this based on site where lateral movement occurs due to backside soil filling load at bridge abutment installed on weak ground, and it is required to sufficiently consider soil reduction during design of EPS construction method due to lateral movement deformation of soft clay layer by losing ground horizontal resistance force due to plasticity of ground around pile as well as combination part damage with pile head and expansion foundation.

  • PDF

Development of New Micropiling Technique and Field Installation (신개념 마이크로파일 개발 및 현장시험시공)

  • Choi, Chang-Ho;Goo, Jeong-Min;Lee, Jung-Hoon;Cho, Sam-Deok;Jeong, Jae-Hyeong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.571-578
    • /
    • 2009
  • Recently, micropiling techniques are increasingly applied in foundation rehabilitation/underpinning and seismic retrofitting projects where working space provides the limited access for conventional piling methods. Micropiling techniques provide environmental-friendly methods for minimizing disturbance to adjacent structures, ground, and the environment. Its installation is possible in restrictive area and general ground conditions. The cardinal features that the installation procedures cause minimal vibration and noise and require very low ceiling height make the micropiling methods to be commonly used for underpin existing structures. In the design point of view, the current practice obligates the bearing capacity of micropile to be obtained from skin friction of only rock-socketing area, in which it implies the frictional resistance of upper soil layer is ignored in the design process. In this paper, a new micropiling method and its verification studies via field installation are presented. The new method provides a specific way to grout bore-hole to increase frictional resistance between surrounding soil and pile-structure and it allows to consider the skin friction of micropiles for upper soil layer during design process.

  • PDF

Engineering characterization of intermediate geomaterials - A review

  • T. Ashok Kumar;Ramanandan Saseendran;V. Sundaravel
    • Geomechanics and Engineering
    • /
    • v.33 no.5
    • /
    • pp.453-462
    • /
    • 2023
  • Intermediate Geomaterials (IGMs) are natural formation materials that exhibit the engineering behavior (strength and compressibility) between soils and rocks. The engineering behavior of such material is highly unpredictable as the IGMs are stiffer than soils and weaker/softer than rocks. Further, the characterization of such material needs exposure to both soil and rock mechanics. In most conventional designs of geotechnical structures, the engineering properties of the IGMs are either aligned with soils or rocks, and this assumption may end up either in an over-conservative design or under-conservative design. Hence, many researchers have attempted to evaluate its actual engineering properties through laboratory tests. However, the test results are partially reliable due to the poor core recovery of IGMs and the possible sample disturbance. Subsequently, in-situ tests have been used in recent years to evaluate the engineering properties of IGMs. However, the respective in-situ test finds its limitations while exploring IGMs with different geological formations at deeper depths with the constraints of sampling. Standard Penetration Test (SPT) is the strength-based index test that is often used to explore IGMs. Moreover, it was also observed that the coefficient of variation of the design parameters (which represents the uncertainties in the design parameters) of IGMs is relatively high, and also the studies on the probabilistic characterization of IGMs are limited compared with soils and rocks. With this perspective, the present article reviews the laboratory and in-situ tests used to characterize the IGMs and explores the shear strength variation based on their geological origin.

Studies on the Frost Heave Revelation and Deformation Behaviour due to Thawing of Weathered Granite Soils (화강암 풍화토의 동상 발현 및 융해에 따른 변형 거동에 관한 연구)

  • 류능환;최중대;류영선
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.3_4
    • /
    • pp.61-71
    • /
    • 1995
  • Natural ground is a composite consisted of the three phases of water, air and soil paircies. Among the three components, water as a material is weU understood but soil particles are not in foundation engineering. Especially, weathered granite soil generally shows a large volumetric expansion when they freeze. And, the stability and durability of the soil have shown decreased with repetitive freezing and thawing processes. These unique charcteristics may cause various construction and management problems if the soil is used as a construction material and foundation layers. This project was initiated to investigate the soil's physical and engineering characteristics resulting from freezing and freezing-thawing processes. Research results may be used as a basic data in solving various problems related to the soil's unique characteristics. The following conclusions were obtained: The degree of decomposition of weathered granite soil in Kangwon-do was very different between the West and East sides of the divide of the Dae-Kwan Ryung. Soil particles distributed wide from very coarse to fine particles. Consistency could be predicted with a function of P200 as LL=0.8 P200+20. Permeability ranged from 10-2 to 10-4cm/sec, moisture content from 15 to 20% and maximum dry density from 1.55 to 1.73 g /cmΥ$^3$ By compaction, soil particles easily crushed, D50 of soil particles decreased and specific surface significantly increased. Shear characteristics varied wide depending on the disturbance of soil. Strain characteristics influenced the soil's dynamic behviour. Elastic failure mode was observed if strain was less than 1O-4/s and plastic failure mode was observed if strain was more than 10-2/s. The elastic wave velocity in the soil rapidly increased if dry density became larger than 1.5 g /cm$^3$ and these values were Vp=250, Vg= 150, respectively. Frost heave ratio was the highest around 0 $^{\circ}C$ and the maximum frost heave pressure was observed when deformation ratio was less than 10% which was the stability state of soil freezing. The state had no relation with frost depth. Over freezing process was observed when drainage or suction freezing process was undergone. Drainage freezing process was observed if freezing velocity was high under confined pressure and suction frost process was occurred if the velocity was low under the same confined process.

  • PDF

Trail and Campground Deteriorations, and Their Environmental Changes of Soil and Vegetation in Chiak Mountain National Park (치악산 국립공원의 등산로 및 야영장 훼손과 주변 토양 및 식생환경의 변화)

  • 권태호;오구균;권영선
    • Korean Journal of Environment and Ecology
    • /
    • v.2 no.1
    • /
    • pp.50-65
    • /
    • 1988
  • Trail and campground deteriorations and their environmental changes of soil and vegetation were studied in Guryong district of Mt. Chiak National Park in 1988. The Widths of both the entire trail and the bare portion as the trail condition were significantly greater on the more heavily used trail. and regressions showed the significant positive relationship between slope along the trail and maximum depth of the trail($R^2$=0.35). Deterioration types of trail which had higher frequency for a total of 63 observations were rock exposure(48%), trail deepening(29%) and root exposure(27%) in the high order. And occurence of trail deterioration was considerably influenced by slope along the trail Ecological changes of soil and vegetation of trailsides were not found at a uniform tendency but could be grouped, by the types of user's disturbance. On campsites. tree damage types and their frequencies were basic as a means of which grasp the limits of user's impact. The area with damaged trees on campsite in pine forest were larger than that in mixed forest and the frequency by damage type of trees varied according to the distance from the core of campsite and to the crown layer. Water content, pH and hardness of soil. coverage of lower trees, species and individuals per 100$m^2$, basal areas of upper and middle layer of trees had significant relationship with the distance from campsite to forest. The range influenced by user's disturbance was more than 70-80m, md Staphylea bumalda, Morns bombycis, Stephanandra incisa and Securinega suffruticosa were considered as tolerant species to user's impact.

  • PDF