• Title/Summary/Keyword: Soil corrosion

Search Result 133, Processing Time 0.02 seconds

Corrosion of Stainless Steel Pipes Buried in the Soils of Seoul Metropolitan During One Year (1년 동안 서울지역 토양에 매설된 스테인리스강의 부식)

  • Hyun, Youngmin;Kim, Heesan;Kim, Young-Ho;Jang, Hyunjung;Park, Youngbog;Choi, Youngjune
    • Corrosion Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.56-64
    • /
    • 2012
  • Factors affecting corrosion of stainless steels such as pH, oxidation and redox potential (ORP), soil resistivity, water content of soil, chloride ion concentration, bacteria activity, and corrosion potential have been investigated using soil analysis, bacterial analysis, surfacial analysis, and analysis of corrosion potentials of several stainless steels buried in 8 sites of Seoul metropolitan for one year. Corrosion potential was affected by occurrance of corrosion as well as bacteria activity but the behavior of corrosion potential with time is different depending on occurrance of corrosion and bacteria activity. The main factor affecting corrosion of stainless steels in soil is level of chloride ion concentration which is also a main factor affecting corrosion of stainless steels in chloride containing drinkable water. Furthermore, guideline of stainless steels in drinkable water is concluded to be applicable to that in soil by the results from surfacial analysis.

Corrosion Performance of Cu Bonded Grounding-Electrode by Accelerated Corrosion Test

  • Choi, Sun Kyu;Kim, Kyung Chul
    • Corrosion Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.211-217
    • /
    • 2018
  • Natural degradation of grounding-electrode in soil environment should be monitored for several decades to predict the lifetime of the grounding electrode for efficient application and management. However, long-term studies for such electrodes have many practical limitations. The conventional accelerated corrosion test is unsuitable for such studies because simulated soil corrosion process cannot represent the actual soil environment. A preliminary experiment of accelerated corrosion test was conducted using existing test standards. The accelerated corrosion test that reflects the actual soil environment has been developed to evaluate corrosion performances of grounding-electrodes in a short period. Several test conditions with different chamber temperatures and salt spray were used to imitate actual field conditions based on ASTM B162, ASTM B117, and ISO 14993 standards. Accelerated degradation specimens of copper-bonded electrodes were made by the facile method and their corrosion performances were investigated. Their corrosion rates were calculated to $0.042{\mu}m/day$, $0.316{\mu}m/day$, and $0.11{\mu}m/day$, respectively. These results indicate that accelerated deterioration of grounding materials can be determined in a short period by using cyclic test condition with salt spray temperature of $50^{\circ}C$.

Elucidation of Corrosion and Failure of Stainless Steel Tubing buried in Soil for Potable Water (토양매설 스테인리스강 상수도 배관의 부식원인 규명)

  • Kim, Young Sik;Park, Soojin;Hwangbo, Deok;Shin, Mincheol
    • Corrosion Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.20-28
    • /
    • 2012
  • Since buried pipes contact the soil directly, corrosion by the soil could be occurred. Recently, some stainless steel pipes after 8 years burial at G area were corroded and leaked. In order to elucidate highly corroded phenomena(its rate was about 0.175 mm/y) of these pipes, the investigation for corrosion environment, soil, stray current's effect, and chemical analysis on the pipes were performed. Most of investigated sites were close to traditional water-closet and showed high moisture and thus those areas could be highly corrosive. In the investigation by two kinds of soil evaluation methods, it was revealed that the soils at G areas were highly corrosive, and moreover the contents of sulfate reducing bacteria in the soils were high. Also, open circuit potentials of many pipes showed different values and its potentials were high positive. Therefore, it was considered that corrosion of buried pipes at G area could be affected by high corrosive soil's environment and stray current corrosion.

Verification of mechanical failure mode through corrosion test of a pump for soil sterilizer injection

  • Han-Ju Yoo;Jooseon Oh;Sung-Bo Shim
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.817-828
    • /
    • 2023
  • Deteriorating soil physical properties and increasing soil pathogens due to the continuous cultivation of field crops are the leading causes of productivity deterioration. Crop rotation, soil heat treatment, and chemical control are used as pest control methods; however, each has limitations in wide application to domestic agriculture. In particular, chemical control requires improvement due to direct exposure to sterilizing solution, odor, and high-intensity work. To improve the overall domestic agricultural environment, the problems of time and cost, such as field maintenance and cultivation scale, must be addressed; therefore, mechanization technology for chemical control must be secured to derive improvement effects in a short period. Most related studies are focused on the control effect of the DMDS (dimethyl disulfide) sterilizer, and research on the performance of the sterilization spray device has been conducted after its introduction in Korea, but research on the corrosion suitability of the material is lacking. This study conducted a corrosion test to secure the corrosion resistance of a soil sterilizer injection pump, and a mechanical failure mode by corrosion by the material was established. The corrosion test comprised operation and neglect tests in which the sterilizing solution was circulated in the pump and remained in the pump, respectively. As a result of the corrosion test, damage occurred due to the weakening of the mechanical strength of the graphite material, and corrosion resistance to aluminum, stainless steel, fluororubber, and PPS (polyphenylene sulfide) materials was confirmed.

Assessment of external corrosion deterioration of large diameter metallic water pipes buried in reclaimed land (간척지대에 매설된 대구경 금속관의 외면 부식손상 평가)

  • Lee, Ho-Min;Choi, Tae-Ho;Kim, Jung-Hyun;Bae, Cheol-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.5
    • /
    • pp.373-383
    • /
    • 2020
  • The purpose of this study was to evaluate the corrosion damage of large diameter metallic pipes buried in reclaimed land due to the corrosion effect by soil, and to propose a method of installing metal pipes in the reclaimed land. The results are as follow. First, the soil of the reclaimed land was gray clay, the soil specific resistance indicating soil corrosiveness was at least 120 Ω-cm, the pH was weakly acidic(5.04 to 5.60), the redox potential was at least 62 mV, the moisture content was at most 48.8%, and chlorine ions and sulfate ions were up to 4,706.1 mg/kg and 420 mg/kg. Therefore, the overall soil corrosivity score was up to 19, and the external corrosion effect seems to be very large. Second, the condition of straight part of pipes was in good condition, but most of KP joints were affected by corrosion at a severe level. The reason for this seems to be that KP joints accelerated corrosion due to stress and crevice corrosion in addition to galvanic corrosion in the same environment. Third, as a result of evaluating correlations of each item that affects the corrosion on the external part, the lower the soil resistivity and redox potential, the greater the effect on the KP joints corrosion, and the moisture content, chloride ion, and sulfate ion, the higher the value, the greater the effect on the corrosion of KP joints. In addition, among soil corrosion items, the coefficient of determination of soil resistivity with corrosion of KP joints was the highest with 0.6439~0.7672. Fourth, when installing metal pipes or other accessories because the soil of the reclaimed land is highly corrosive, it is necessary to apply a corrosion preventive method to extend the life of pipes and prevent leakage accidents caused by corrosion damage to the joint.

Statistical Approach for Corrosion Prediction Under Fuzzy Soil Environment

  • Kim, Mincheol;Inakazu, Toyono;Koizumi, Akira;Koo, Jayong
    • Environmental Engineering Research
    • /
    • v.18 no.1
    • /
    • pp.37-43
    • /
    • 2013
  • Water distribution pipes installed underground have potential risks of pipe failure and burst. After years of use, pipe walls tend to be corroded due to aggressive soil environments where they are located. The present study aims to assess the degree of external corrosion of a distribution pipe network. In situ data obtained through test pit excavation and direct sampling are carefully collated and assessed. A statistical approach is useful to predict severity of pipe corrosion at present and in future. First, criteria functions defined by discriminant function analysis are formulated to judge whether the pipes are seriously corroded. Data utilized in the analyses are those related to soil property, i.e., soil resistivity, pH, water content, and chloride ion. Secondly, corrosion factors that significantly affect pipe wall pitting (vertical) and spread (horizontal) on the pipe surface are identified with a view to quantifying a degree of the pipe corrosion. Finally, a most reliable model represented in the form of a multiple regression equation is developed for this purpose. From these analyses, it can be concluded that our proposed model is effective to predict the severity and rate of pipe corrosion utilizing selected factors that reflect the fuzzy soil environment.

Corrosion behavior of coated steel pipes for water works with water content of soil (토양의 함수율에 빠른 상수도용 도복장 강관의 부식거동에 관한 연구)

  • Park, Kyung-Wha;Bae, Jeong-Hyo;Ha, Tae-Hyun;Lee, Hyun-Goo;Ha, Yoon-Cheol;Kim, Dae-Kyeong
    • Proceedings of the KIEE Conference
    • /
    • 2004.11a
    • /
    • pp.227-229
    • /
    • 2004
  • The corrosion rate of buried steel pipes for water works was investigated under soil environment. Steel pipe shows various characteristics caused by complicated environment condition of underground and especially the corrosion rate of it depends on the resistivity of soil controlled by content of water. In this paper, the corrosion behavior of steel pipe was observed by polarization test under soil and the silica sand in the water content range of 0-50%. Generally it is well known that the resistivity of soil decreased rapidly over 15% water content. In fact the corrosion rate, corrosion potential, and corrosion consumption (MPY) of steel pipe were shown very different aspects within 20% water content.

  • PDF

Steel Pile Corrosion in Potential Acid Sulfate Soil (잠재성 특이산성토중 강관말뚝의 부식)

  • Lee, Seung-Heon;Park, Mi-Hyeun;Yoon, Kyung-Sup
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.559-562
    • /
    • 2003
  • The results and discussions of surveyed case site at constructed steel pile in potential acid sulfate soil were as follows. Topography at surveyed site was local alluvial valley and that site soils was classified as BanGog and YuGye series as detailed soil surveyed results in RDA and soil texture was Clay/Clay Loam. Soils pH was neutral, which was average 7.5 but much decreased to average 4.2 after $H_2O_2$ treatment. Organic matter and sulfate ions contents were very rich. The corrosion was severe at ground water fluctuation depth. Deposits colored black were attached to steel pile surface, which because of violent reaction in treatment HCI solution, were guessed as corrosion products (FeS) reduced by sulfate reducing bacteria(SRB). Consequently, main cause was thought microbiologically induced corrosion at this site where there is ground water fluctuation occurring oxidation and reduction reactions in turn and the soil is potential acid sulfate soil.

  • PDF

Assessment of Soil Characteristics on External Corrosion of Water Pipes (토양특성이 상수도관의 외부부식에 미치는 영향 평가)

  • Bae, Chul-Ho;Kim, Ju-Hwan;Park, Sang-Young;Kim, Jeong-Hyun;Hong, Seong-Ho;Lee, Kyoung-Jae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.5
    • /
    • pp.737-745
    • /
    • 2006
  • The goal of this study is to present an external pit corrosion rate($p_{ecr}$) model with considering both the age of pipe and the soil characteristics. The correlation of nonlinear exponential model among conventional empirical models was a little higher than other empirical models in the prediction of $p_{ecr}$ according to the age of pipe. However, there has been a limit to predict Peer with the model by using only a pipe age since installation as a variable. The soil analysis results from sixty nine samples showed that all of the samples were non corrosive in the assessment of ANSI/AWWA scoring system. The correlation of soil corrosion factors and $p_{ecr}$ was also low. The application result of linear and nonlinear regression models that soil characteristics only showed a low correlation with $p_{ecr}$ Proposed nonlinear regression model in this study, with considering both the age of pipe and the soil characteristics, showed a little higher correlation ($R^2=0.46$) than conventional model.

Green synthesis of silver nanoparticles to the microbiological corrosion deterrence of oil and gas pipelines buried in the soil

  • Zhi Zhang;Jingguo Du;Tayebeh Mahmoudi
    • Advances in nano research
    • /
    • v.15 no.4
    • /
    • pp.355-366
    • /
    • 2023
  • Biological corrosion, a crucial aspect of metal degradation, has received limited attention despite its significance. It involves the deterioration of metals due to corrosion processes influenced by living organisms, including bacteria. Soil represents a substantial threat to pipeline corrosion as it contains chemical and microbial factors that cause severe damage to water, oil, and gas transmission projects. To combat fouling and corrosion, corrosion inhibitors are commonly used; however, their production often involves expensive and hazardous chemicals. Consequently, researchers are exploring natural and eco-friendly alternatives, specifically nano-sized products, as potent corrosion inhibitors. This study aims to environmentally synthesize silver nanoparticles using an extract from Lagoecia cuminoides L and evaluate their effectiveness in preventing biological corrosion of buried pipes in soil. The optimal experimental conditions were determined as follows: a volume of 4 ml for the extract, a volume of 4 ml for silver nitrate (AgNO3), pH 9, a duration of 60 minutes, and a temperature of 60 degrees Celsius. Analysis using transmission electron microscopy confirmed the formation of nanoparticles with an average size of approximately 28 nm, while X-ray diffraction patterns exhibited suitable peak intensities. By employing the Scherer equation, the average particle size was estimated to be around 30 nm. Furthermore, antibacterial studies revealed the potent antibacterial activity of the synthesized silver nanoparticles against both aerobic and anaerobic bacteria. This property effectively mitigates the biological corrosion caused by bacteria in steel pipes buried in soil.