• Title/Summary/Keyword: Soil components

Search Result 1,029, Processing Time 0.028 seconds

Studies on the Seed Transmission of Colletotrichum spp. in Red Pepper (Capsicum annuum) (고추 탄저병균(炭疽病菌)의 종자전염(種子傳染)에 관(關)한 연구(硏究))

  • Yu, Seung Hun;Park, Jong Seong;Lee, Hyang Burm;Kim, Hong Gi
    • Korean Journal of Agricultural Science
    • /
    • v.14 no.1
    • /
    • pp.16-25
    • /
    • 1987
  • Colletotrichum acutatum, C. coccodes, C. dematium and C. gloeosporioides were detected in seed samples of red pepper (Capsicum annuum). C. dematium and C. gloeosporioides were the predominant species, maximum seed infection of the species in some samples were 84% and 28%, respectively. C. acutatum and C. coccodes were recorded only in low percentages of 1-2. The blotter method proved more suitable for detecting Colletotricum spp. than the deep freezing blotter or agar plate methods. Plating of seed components showed that C. dematium and C. gloeosporioides were recovered more frequently from seed coat, and decreasing amounts of infection were observed in the endosperm and cotyledon. Seed-borne C. dematium and C. gloeosporioides caused seed rot, damping-off, seedling blight and brown discoloration of cotyledon and hypocotyl when infected seeds were sown in agar of test tube or in soil. Inoculation experiments showed that C. acutatum was pathogenic to red fruit of red pepper and C. coccodes was highly pathogenic to red fruit and weakly pathogenic to leaf of the plant. C. dematium was highly pathogenic to leaf and green fruit and C. gloeosporioides was pathogenic to not only leaf but also green and red fruits. Host range of the four seed-borne species of Colletotrichum was also investigated.

  • PDF

Correlation Analysis with Vegetation Indices and Vegetation-Endmembers From Airborne Hyperspectral Data in Forest Area (산림지역의 항공기 탑재 하이퍼스펙트럴 영상에 대한 식생-Endmember와 식생지수의 상관 분석)

  • Kim, Tae-Woo;We, Gwang-Jae;Suh, Yong-Cheol
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.3
    • /
    • pp.52-65
    • /
    • 2012
  • The net biomass accumulation (or net primary production, NPP) and gross primary production (GPP) have closely related with carbon accumulations(or carbon exchange) in vegetation. There are many approaches to estimate biomass using remote sensing techniques. The vegetation indices (VIs) can be a methodology to estimate biomass which assumes total chlorophyll contents. Various VIs were characterized with difference development conditions as vegetation species, input datasets. The hyperspectral data have also different spatial/spectral resolutions for aerial surveying. Additionally they need particular spectral bands selection difficulty to calculate the VIs. The objective of this study is to evaluate the correlations with airborne hyperspectral data (compact airborne spectrographic imager, CASI) and spectral unmixing model (or spectral mixture analysis, SMA) to characterize vegetation indices in forest area. The spectral mixture analysis was used to model the spectral purity of each pixel as an endmember. The endmembers are the fraction components derived from hyperspectral data through the SMA. In this study, we choose three endmembers represented vegetation pixels in the hyperspectral data. These endmembers were compared with 9 VIs by the Pearson's correlation coefficient. The results show MTVI1 and TVI have same correlation coefficient with 0.877. The MCARI, especially has very high relationship with vegetation endmembers as 0.9061 at less vegetation and soil distributed site. The MTVI1 and TVI have high correlations with the vegetation endmembers as 0.757 in whole test sites.

Aging of Fermented shrimp in underground cave (토굴을 이용한 새우젓의 숙성)

  • Lee, Eun Hyun;Lee, Eun Mi;Chang, Kyu Seob;Jang, Hae Dong
    • Korean Journal of Agricultural Science
    • /
    • v.24 no.2
    • /
    • pp.132-137
    • /
    • 1997
  • Effective storage facilities are required to stabilize the price of agricultural and marine products to preserve their qualities due to the big fluctuation of shrimp price in Korea. It is easy to make the cave because of good conditions of the land configuration, soil and convenient transportation. The cave storage can save the cost about 40% in building site and equipment, and about 50% in maintenance comparing to existing low temperature storage facilities. The cave storage provide to improve the quality of their stored products with the low heat conductivity, the constant temperature and humidity year round. Therefore, more low temperature storage facilities are required because the items are expanded from potatoes, sweet potatoes, onions, garlics, apples and chestnuts to tangerines, grapes, cabbages, radishes, and wet ginsengs. The demands of the low temperature storage facilities can be substituted into the cave storage facilities. Thus, studies are conducted to observe the changes of the components of the pure and the seasoned salted shrimps with fermentation period during stored at room temperature in cave and to establish the storing at underground facilities to produce high quality salted fish to make profit.

  • PDF

Myxococcus xanthus socD500 mutation causes Sporulation and Induction of two C-signal Specific Genes (Myxococcus xanthus socD500에 의한 포자 형성 및 CsgA신호에 특이적 유전자의 발현에 관한 연구)

  • 이병욱
    • Journal of Life Science
    • /
    • v.13 no.2
    • /
    • pp.184-190
    • /
    • 2003
  • Myxococcus xanthus is a Gram negative, rod-shaped, soil bacterium that displays a social behaviors, and multicellular development upon nutrient deprivation. The csgA gene encoding a cell surface protein is essential for developmental behaviors including rippling, aggregation, fruiting body formation and sporulation. csgA mutants show normal vegetative growth, but lack all these developmental phenotypes. Expression of the CsgA (C-signal) specific genes are eliminated or dramatically reduced in csgA mutants. In order to identify components of C-signal transduction pathway, second site mutations were introduced into csgA mutants and were identified which can fully or partially restore development of csgA mutants (Rhie, H. G. et. al. 1989. J. Bacteriol. 171, 3268-3276). One of such csgA suppressor mutations, socD500 restores only sporulation to csgA mutants at 15$^{\circ}C$. The socD500 mutaion however eliminates the three basic developmental requirements, starvation, high cell density and a solid surface. Only sporulation, not accompanied with fruiting body formation is induced simply by shifting the temperature of vegetatively growing cells from $32^{\circ}C$ to $15^{\circ}C$. Spores induced by socD500 mutation is not as thick as that of wild-type fruiting body. In socD500 genetic background, two of ten C-signal dependent genes, $\Omega$DK4506 and $\Omega$DK4406 are more highly expressed in growing cells at $15^{\circ}C$. These results indicate that the socD500 mutation may be partly involved in the regulation of expression of two C-signal dependent genes and genes for sporulation in this transduction pathway.

Study on the Growth Environment of 'Gangwha-mugwort' Through the Climatological Characteristic Analysis of Gangwha Region (강화지역의 기후특성 분석을 통한 '강화약쑥'의 생육 환경 연구)

  • Ahn, Joong-Bae;Hur, Ji-Na;Jung, Hae-Gon;Park, Jong-Ho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.2
    • /
    • pp.71-78
    • /
    • 2012
  • Eupatilin, one of representative medical components of mugwort, can be efficiently extracted from the 'Gangwha Sajabalssuk'. The Eupatilin content may depend on environmental factors such as soil and regional climate in addition to a genetic factor and Gangwha region has a profitable environmental condition for the mugwort growth. In this study, the climatological characteristics of Gangwha was analyzed in order to find the environmental condition of mugwort containing high Eupatilin in term of atmospheric, oceanographic and land variables. The climate of Gangwha is characterized by the relatively low daily temperature and large diurnal variation with plenty of solar radiation, long sunshine duration and less cloudiness. According to our correlation analysis, the long sunshine duration and the large diurnal temperature variation are highly correlated with the Eupatilin contents. The result implies that Gangwha has the favorable conditions for the cultivation and the habitat of the high-Eupatilin concentrated mugwort. Because of the sea surrounding Gangwha Island with low salinity and moderate wind, the salt contained in sea breeze is relatively low compared to other regions. Furthermore, Gangwha has clean atmospheric environment compared to other regions because the concentrations of toxic gases harmful to crop growth such as nitrogen dioxide ($NO_2$), sulfite gas ($SO_2$) and fine dust (PM-10) are lower in the air. The ozone ($O_3$) concentration is moderate and within the level of natural production. It is also found that moderately coarse texture or fine loamy soils known as good for water drainage and for the growth and cultivation of the 'Gangwha-mugwort' are distributed throughout the areas around mountainous districts in Gangwha, coinciding with those of mugwort habitat.

The Effects of Earth Worm Casts as a Plant Growth Media on the Growth of Orchardgrass Seedlings (Plant Growth Media로써 지렁이 분립이 Orchardgrass 생육에 미치는 영향)

  • Lee, Pil-Won;Lee, Ju-Sam
    • Korean Journal of Organic Agriculture
    • /
    • v.7 no.2
    • /
    • pp.179-188
    • /
    • 1999
  • The effects of earthworm casts as a plant growth media on the growth of orchardgrass seedlings and the changes of physico-chemical properties in worm casts mixture soils were investigated during the growth period of 1998. Worm casts were mixtured with vermiculite, perlite and peat moss, and mixture ratios of worm casts with commercial recommended soil were 100:0(control), 75:25, 50:50, 25:75, and 0:100, respectively. The results were obtained as follows; 1. Plant length(PL) was increased in higher mixture ratios of worm casts and peat moss than those of other mixture ratios of commercial recommended soils. 2. Number of tillers(NT) were significantly increased in mixture ratios of worm casts and peat moss(50:50) and 100% of vermiculite. 3. Root length(RL) was significantly differences between mixture ratios at the worm casts, and the highest value was obtained at all mixture ratios of worm casts and perlite. 4. Dry weight of leaf(LW) was not significantly differences at mixture ratios of 50:50 in all treatments. Especially, between the mixture ratios of worm casts with peatmoss(25:75) and peat moss(75:25) were not significantly differences in dry weight of leaf(LW). The highest value of dry weight of leaf(LW) was obtained at mixture ratios of peat moss and worm casts. 5. Dry weight of tillers(SW) was not significantly differences at mixture ratios of 50:50 in all treatments, and peat moss(75:25) and vermiculite(75:25), respectively. 6. biological yield(BY) at all treatments were increased by yield components of dry weight of tillers(SW), dry weight of root(RW) and length of root(RL). 7. The biological yield of orchardgrass seedlings was greatly increased with mixture ratios of worm casts and peat moss over the 50%.

  • PDF

Water and mass balance analysis for hydrological model development in paddy fields

  • Tasuku, KATO;Satoko, OMINO;Ryota, TSUCHIYA;Satomi, TABATA
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.238-238
    • /
    • 2015
  • There are demands for water environmental analysis of discharge processes in paddy fields, however, it is not fully understood in nutrients discharge process for watershed modeling. As hydrological processes both surface and ground water and agricultural water managements are so complex in paddy fields, the development of lowland paddy fields watershed model is more difficult than upland watershed model. In this research, the improvement of SWAT (Soil and Water Assessment Tool) model for a paddy watershed was conducted. First, modification of surface inundated process was developed in improved pot hole option. Those modification was evaluated by monitoring data. Second, the monitoring data in river and drainage channel in lowland paddy fields from 2012 to 2014 were analyzed to understand discharge characteristics. As a case study, Imbanuma basin, Japan, was chosen as typical land and water use in Asian countries. In this basin, lowland paddy fields are irrigated from river water using small pumps that were located in distribution within the watershed. Daily hydrological fluctuation was too complex to estimate. Then, to understand surface and ground water discharge characteristics in irrigation (Apr-Aug) and non-irrigation (Sep-Mar) period, the water and material balance analysis was conducted. The analysis was composed two parts, watershed and river channel blocks. As results of model simulation, output was satisfactory in NSE, but uncertainty was large. It would be coming from discharge process in return water. The river water and ground water in paddy fields were exchanged each other in 5.7% and 10.8% to river discharge in irrigation and non-irrigation periods, respectively. Through this exchange, nutrient loads were exchanged between river and paddy fields components. It suggested that discharge from paddy fields was not only responded to rainfall but dynamically related with river water table. In general, hydrological models is assumed that a discharge process is one way from watershed to river. However, in lowland paddy fields, discharge process is dynamically changed. This function of paddy fields showed that flood was mitigated and temporally held as storage in ground water. Then, it showed that water quality was changed in mitigated function in the water exchange process in lowland paddy fields. In future, it was expected that hydrological models for lowland paddy fields would be developed with this mitigation function.

  • PDF

Study on Scientific Analysis about Red Pigment And Binder - The Korean Ancient Red Pottery - (한국 고대 붉은 간토기의 적색 안료 및 교착제에 대한 과학적 분석)

  • Lee, Ui Cheon;Park, Jung Hae;Lee, Je Hyun;Kim, Soo Chul
    • Journal of Conservation Science
    • /
    • v.37 no.5
    • /
    • pp.606-616
    • /
    • 2021
  • From the collection of the National Kimhae Museum, qualitative analyses using microscopic observation, SEM-EDS, Raman spectroscopy, FT-IR-ATR spectroscopy, and GC-MS were conducted on three burnished red potteries-Jeoksaekmaoyeonwa burnished red pottery (Neolithic age red pottery), Dandomaoyeonwan burnished red pottery(Bronze age red pottery) and Jeoksaekmaoyeongajimun burnished red pottery(Bronze age red pottery)-to investigate the components of the red pigments and the binder. After the layers of the primer were separated from the red surface, crystals of red pigment particles and minerals were found on the red surface. Through SEM-EDS, Raman estimates that the red pigment is Among soil pigments with iron oxide(Fe2O3) as the main color development source, Red Ocher(Fe2O3). A band characteristic of the Urushiol polymer was detected in the FTIR-ATRspectra(4000~600cm-1), GC-MS analysis confirmed the presence of the benzenemethanol-2-prophenyl, 4-heptylphenol, 1-tetracecanol, heptafluorobutyric texidecane, all of which are the ingredients of the directional structure of the lacquer present in the red layer. Therefore, it seemed that the three burnished red pottery: Jeoksaekmaoyeonwan pottery(Neolithic age burnished red pottery), Dandomaoyeonwan pottery(bronze age burnished red pottery) and the Jeoksaekmaoyeongajimun pottery(bronze age burnished red pottery) made by mixing minerals and Red Ocher(Fe2O3), with lacquer.

A Study on Photovoltaic Panel Monitoring Using Sentinel-1 InSAR Coherence (Sentinel-1 InSAR Coherence를 이용한 태양광전지 패널 모니터링 효율화 연구)

  • Yoon, Donghyeon;Lee, Moungjin;Lee, Seungkuk
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.233-243
    • /
    • 2021
  • Photovoltaic panels are hazardous electronic waste that has heavy metal as one of the hazardous components. Each year, hazardous electronic waste is increasing worldwide and every heavy rainfall exposes the photovoltaic panel to become the source of heavy metal soil contamination. the development needs a monitoring technology for this hazardous exposure. this research use relationships between SAR temporal baseline and coherence of Sentinel-1 satellite to detected photovoltaic panel. Also, the photovoltaic plant detection tested using the difference between that photovoltaic panel and the other difference surface of coherence. The author tested the photovoltaic panel and its environment to calculate differences in coherence relationships. As a result of the experiment, the coherence of the photovoltaic panel, which is assumed to be a permanent scatterer, shows a bias that is biased toward a median value of 0.53 with a distribution of 0.50 to 0.65. Therefore, further research is needed to improve errors that may occur during processing. Additionally, the author found that the change detection using a temporal baseline is possible as the rate of reduction of coherence of photovoltaic panels differs from those of artificial objects such as buildings. This result could be an efficient way to continuously monitor regardless of weather conditions, which was a limitation of the existing optical satellite image-based photovoltaic panel detection research and to understand the spatial distribution in situations such as photovoltaic panel loss.

A Study on the Application of a Turbidity Reduction System for the Utilization of Thermal Wastewater in High Turbidity Zones (고탁도 해역의 온배수 활용을 위한 탁도저감시스템 적용에 대한 연구)

  • Ha, Shin-Young;Oh, Cheol;Gug, Seung-Gi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.7
    • /
    • pp.916-922
    • /
    • 2018
  • Recently, power plant effluent condensers received a Renewable Energy Certificate as components of hydrothermal energy (weighted 1.5 times) as one target item of the Renewable Portfolio Standard (RPS) policy. Accordingly, more attention is being paid to the value of thermal wastewater as a heat source. However, for utilization of thermal wastewater from power plants in high-turbidity areas like the West Sea of Korea, a turbidity reducing system is required to reduce system contamination. In this study, an experimental test was performed over a month on thermal wastewater from power plants located in the West Sea of Korea. It was found that water turbidity was reduced by more than 80 % and that the concentration of organic materials and nutrient salts was partially reduced due to the reduction of floating/drifting materials. To conduct a comparative analysis of the level of contamination of the heat exchanger when thermal wastewater flows in through a turbidity reducing system versus when the condenser effluent flows in directly without passing through the turbidity system, we disassembled and analyzed heat exchangers operated for 30 days. As a result, it was found that the heat exchanger without a turbidity reducing system had a higher level of contamination. Main contaminants (scale) that flowed in to the heat exchanger included minerals such as $SiO_2$, $Na(Si_3Al)O_8$, $CaCO_3$ and NaCl. It was estimated that marine sediment soil flowed in to the heat exchanger because of the high level of turbidity in the water-intake areas.