• Title/Summary/Keyword: Soil box

Search Result 295, Processing Time 0.026 seconds

Uniform large scale cohesionless soil sample preparation using mobile pluviator

  • Jamil, Irfan;Ahmad, Irshad;Ullah, Wali;Junaid, Muhammad;Khan, Shahid Ali
    • Geomechanics and Engineering
    • /
    • v.28 no.5
    • /
    • pp.521-529
    • /
    • 2022
  • This research work deals with the development of air pluviation method for preparing uniform sand specimens for conducting large scale laboratory testing. Simulating real field conditions and to get reliable results, air pluviation method is highly desirable. This paper presents a special technique called air pluviation or sand raining technique for achieving uniform relative density. The apparatus is accompanied by a hopper, shutters with different orifice sizes and numbers and set of sieves. Before using this apparatus, calibration curves are drawn for relative density against different height of fall (H) and shutter sizes. From these calibration curves, corresponding to the desired relative density of 60%, the shutter size of 13mm and height of fall of 457.2 mm, are selected and maintained throughout the pluviation process. The density obtained from the mobile pluviator is then verified using the Dynamic Cone Penetrometer (DCP) test where the soil is poured in the box using defined shutter size and fall height. The results obtained from the DCP test are averaged as 60±0.5 which was desirable. The mobile pluviator used in this research is also capable of obtaining relative densities up to 90%. The instrument is validated using experimental and numerical approach. In numerical study, Plaxis 3D software is used in which the soil mass is defined by 10-Node tetrahedral elements and 6-Node plate is used to simulate plate behavior in the validation phase. The results obtained from numerical approach were compared with that of experimental one which showed very close correlation.

Development of Modified Flexibility Ratio - Racking Ratio Relationship of Box Tunnels Subjected to Earthquake Loading Considering Rocking

  • Duhee Park;Van-Quang Nguyen;Gyuphil Lee;Youngsuk Lee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.2
    • /
    • pp.13-24
    • /
    • 2023
  • Tunnels may undergo a larger or a smaller response compared with the free-field soil. In the pseudo-static procedure, the response of the tunnel is most often characterized by a curve that relates the racking ratio (R) with the flexibility ratio (F), where R represents the ratio of the tunnel response with respect to the free-field vibration and F is the relative stiffness of the tunnel and the surrounding soil. A set of analytical and empirical curves that do not account for the depth and the aspect ratio of the tunnel are typically used in practice. In this study, a series of dynamic analyses are conducted to develop a set of F-Rm relations for use in a frame analysis method. Rm is defined as an adjusted R where the rocking mode of deformation is removed and only the racking deformation is extracted. The numerical model is validated against centrifuge test recordings. The influence of aspect ratio, buried depth of tunnel on results is investigated. The results show that Rm increases with the increase of the buried depth and the aspect ratio. The widely used F-R relations are highlighted to be different compared with the obtained results in this study. Therefore, the updated F-Rm relations with proposed equations are recommended to be used in practice design. The rocking response decreases with either the decrease of the difference of stiffness between surrounding soil and tunnel or the larger aspect ratio of the tunnel section.

Simultaneous Removal of Cd and Cr(VI) in the Subsurface Using Permeable Reactive Barrier Filled with Fe-loaded Zeolite: Soil Box Experiment (Fe-loaded zeolite로 충진된 투수성 반응벽체를 이용한 지반 내 Cd과 Cr(VI)의 동시제거: 모형 토조 실험)

  • Rhee, Sung-Su;Lee, Seung-Hak;Park, Jun-Boum
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.10
    • /
    • pp.61-68
    • /
    • 2010
  • A pilot-scale model test was performed to estimate the availability of new material, Fe-loaded zeolite, as the filling material in permeable reactive barrier (PRB) against the contaminated groundwater with both Cd and Cr(VI). Aquifer was simulated by filling up a large scale soil tank with sands, and mobilizing the water flow by the head difference of water level in both ends of the tank. Then, the mixture of concentrated Cd and Cr(VI) solution was injected into the aquifer to form a contaminant plume, and its behavior through Fe-loaded zeolite barrier was monitored. The test results showed that Fe-loaded zeolite barrier successfully treated the contaminant plume containing both Cd and Cr(VI) and that the immobilized contaminants in the barrier were not desorbed or released. The results indicated that the Fe-loaded zeolite could be a promising material in PRBs against the multiple contaminants with different ionic forms like Cr(VI) and Cd.

A Experimental Study on Improvement of Marine Clay through the Electrolytic Leaching Effect in Aluminum Electrode (알루미늄 전극의 용출에 따른 해성점토의 개량에 관한 실험적 연구)

  • Kim, Jong-Yun;Yun, Myung-Suk;Jung, Seung-Yong;Kim, Soo-Sam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1173-1180
    • /
    • 2006
  • In this study, aluminum electrodes were put in marine clay which was taken from the south coast in Korea to increase the undrained shear strength by inducing the densification and cementation between clay particles and precipitates which were developed by electric decomposition in an electrode. To raise the cementation rate and reduce treatment time, high electric current (2.5A) was applied in each electrode at a semi-pilot scale soil box with marine clay. After the tests, the undrained shear strength was measured at designated points using a static cone penetration test device and sampling was conducted simultaneously in order to measure water content, pH and electric conductivity which would be the key for configuring the cementation effects indirectly. In the results of electric decomposition in aluminum electrode, the measured shear strength was increased considerably compared to the initial shear strength because of the cementation effect between iron ions and soil particles.

  • PDF

Evaluation of a DDB design method for bridges isolated with triple pendulum bearings

  • Amiri, Gholamreza Ghodrati;Shalmaee, Mahdi Mohammadian;Namiranian, Pejman
    • Structural Engineering and Mechanics
    • /
    • v.59 no.5
    • /
    • pp.803-820
    • /
    • 2016
  • In this study a direct displacement-based design (DDBD) procedure for a continuous deck bridge isolated with triple friction pendulum bearings (TFPB) has been proposed and the seismic demands of the bridge such as isolator's displacement and drift of piers obtained from this procedure evaluated under two-directional near-field ground motions. The structural model used here are continuous, three-span, castin-place concrete box girder bridge with a 30-degree skew which are isolated with 9 different TFPBs. By comparing the results of DDBD method with those of nonlinear time history analysis (NTHA), it can be concluded that the proposed procedure is able to predict seismic demands of similar isolated bridges with acceptable accuracy. Results of NTHA shows that dispersion of peak resultant responses for a group of ground motions increases by increasing their average value of responses. It needs to be noted that the demands parameters calculated by the DDBD procedure are almost overestimated for stiffer soil condition, but there is some underestimation in results of this method for softer soil condition.

Characteristics of Uplift Capacity of a Embedded Foundation and Soil Type (매입기초와 토질에 따른 인발저항력 특성)

  • Lim, SeongYoon;Kim, YuYoung;Yu, SeokChul;Kim, MyeongHwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.3
    • /
    • pp.23-30
    • /
    • 2019
  • In this study, we evaluated the applicability of proper embedded depth of fillings by examining the uplift resistance using spiral foundation and top base foundation. As a result of the model test, the maximum uplift resistance increased with the embedded depth. The maximum uplift resistance of each region was found to be 50cm depth. The spiral foundation was 335.14N of Sancheong, 312.32N of Seongju, 403.94N of Wanju, and the top base foundation was 745.06N of Sancheong, 1028.82N of Seongju and 950.76N of Wanju. The yield point after the elastic section in the stress-displacement graph of the top base foundation was calculated as the maximum uplift resistance. For this reason, farmers do not actually use top bases foundation. Therefore, it was considered that the additional load increase due to slip connector will not occur. Model test results show that the maximum uplift resistance increases with the purlinss installed under the ground. Therefore, additional comparative studies through purlins installation will be needed.

Changes in Freshness of Endive (Cichorium endivia L.) by Different Packaging Types (엔다이브 포장방법에 따른 저장 중 선도 변화)

  • Kim, Young Mi;Lee, Do Hyun;Jeong, Jae Young;Jang, Seong Ho;Lee, Youn Suk;Chang, Min-Sun;Lee, Jung-Soo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.22 no.3
    • /
    • pp.71-77
    • /
    • 2016
  • The effect of packaging material in enhancing the shelf life and maintaining the postharvest quality of endive (Cichorium endivia L.) was studied. Endive were packed in three packaging materials: paper box (control); paper box with endive wrapped in high density polyethylene (HDPE) film; and plastic box container covered with high density polyethylene (HDPE) film. The quality characteristics, such as fresh weight loss, soil plant analysis development (SPAD) value, and appearance of endive were investigated during 20 days of storage at $2^{\circ}C$. The endive wrapped with HDPE film inside the paper box showed the lowest weight loss, highest SPAD value and the best appearance compared to those wrapped in other packaging types during storage. The results indicate that the marketability of endive can be optimized with proper packaging and storage.

Assessment of Performances of Low Impact Development (LID) Facilities with Vegetation (식생이 조성된 LID 시설의 효율 평가)

  • Hong, Jung Sun;Kim, Lee-Hyung
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.2
    • /
    • pp.100-109
    • /
    • 2016
  • Low impact development (LID) facilities are established for the purpose of restoring the natural hydrologic cycle as well as the removal of pollutants from stormwater runoff. Improved efficiency of LID facilities can be obtained through the optimized interaction of their major components (i.e., plant, soil, filter media, microorganisms, etc.). Therefore, this study was performed to evaluate the performances of LID facilities in terms of runoff and pollutant reduction and also to provide an optimal maintenance method. The monitoring was conducted on four LID technologies (e.g., bioretention, small wetlands, rain garden and tree box filter). The optimal SA/CA (facility surface area / catchment area) ratio for runoff reduction greater than 40% is determined to be 1 - 5%. Since runoff reduction affects the pollutant removal efficiency in LID facilities, SA/CA ratio is derived as an important factor in designing LID facilities. The LID facilities that are found to be effective in reducing stormwater runoff are in the following order: rain garden > tree box filter > bioretention> small wetland. Meanwhile, in terms of removal of particulate matter (TSS), the effectiveness of the facilities are in the following order: rain garden > tree box filter > small wetland > bioretention; rain gardens > tree box filter > bioretention > small wetland were determined for the removal of organic matter (COD, TOC), nutrients (TN, TP) and heavy metals (Cu, Pb, Cd, Zn). These results can be used as an important material for the design of LID facilities in runoff volume and pollutant reduction.

Geotechnical Characteristics of Prefabricated Vertical Drain System for Contaminated Soil Remediation (오염토양 복원을 위한 연직배수시스템의 지반공학적 특성)

  • Shin, Eunchul;Park, Jeongjun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.5
    • /
    • pp.5-14
    • /
    • 2007
  • The quantity of noxious wastes generated by the growth in industrialization and population in all over the world and its potential hazards in subsurface environments are becoming increasingly significant. The extraction of the contaminant from the soil and movement of the water are restricted due to the low permeability and adsorption characteristics of the reclaimed soils. Incorporated technique with PVDs have been used for dewatering from fine-grained soils for the purpose of ground improvement by means of soil flushing and soil vapor extraction systems. This paper is to evaluate several key parameters that affected to the performance of the PVDs specifically with regard to: well resistance of PVD, zone of influence, and smear effects. In the feasibility of contaminant remediation was evaluated in pilot-scale laboratory experiments. Well resistance is affected on the vertical discharge capacity of the PVDs under the various vacuum pressures. The discharge capacity increases consistently in areal extents with higher applied vacuum up to a limiting vacuum pressure. The head values for each piezometer at different vacuum pressures show that the largest head loss occurs within 14 cm of the PVD. Air flow rates and head losses were measured for the PVD placed in the model test box and the gas permeability of the silty soils was calculated. Increasing the equivalent diameter results in a decrease in the calculated gas permeability. It is concluded that the gas permeability determined over the 1,500 to 2,000 $cm^3/s$ flow rates are the most accurate values which yields gas permeability of about 3.152 Darcy.

  • PDF

An Experimental Study on the Application of End-Expanded Soil Nailing Method (선단확장식 소일네일링 공법의 적용성에 관한 실험적 연구)

  • Lee, Sang-Eun;Jang, Yun-Ho;Moon, Chang-Yeul;Jeong, Gyo-Cheol;Park, Young-Sun
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.525-534
    • /
    • 2007
  • The peculiarity of end-expanded soil nailing method(EESNM) is in fixing the wedge-type steel body spreaded by collars and grouting its surroundings by cement milk within soils, after extending hole bottom over drilling hole diameter with top drill bit. The present study was done to establish the effect of this method. Laboratory model test were carried out to investigate the behavior characteristics with the performance of the pull-out test and failure experiment, after preparing soil test box having 1,300mm length, width 1,000mm, and height 1,100mm, and the same experimental condition was set up to compare with the general soil nailing method(GSNM). The pull-out force of about 23 percentage was increased, and the horizontal displacements 1.2 from 9.1 percentage in soil-nailed wall decreased in EESNM compare with GSNM. The axial force acting on nail increased considerably at load level over 7 ton in EESNM and 5 ton in GSNM. The predicted failure line from the maxima analyzed by axial tensile strain located at long distance from soil-nailed wall in EESNM. The EESNM demonstrated the superiority of reinforcement effect in comparison with GSNM from the results above mentioned.