• Title/Summary/Keyword: Soil biological properties

Search Result 284, Processing Time 0.025 seconds

Effects of Organic Amendments on Soil Microbial Community in Red Pepper Field (시용 유기물의 종류가 고추 재배지 토양 미생물상에 미치는 영향)

  • Park, Kee-Choon;Kim, Yeong-Suk;Kwon, Oh-Hoon;Kwon, Tae-Ryong;Park, Sang-Gu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.2
    • /
    • pp.118-125
    • /
    • 2008
  • Diverse organic amendments available in local areas have been used to improve soil quality in red pepper field and so the need for investigating the soil chemical and biological properties changed by the organic amendments application is increasing. Soil microbial diversities were measured by phospholipid fatty acid (PLFA) and Biolog $EcoPlate^{TM}$. Compost was most effective for improving soil chemical properties including pH, EC, total nitrogen, P, K, and Ca, and bark increased soil organic matter significantly (P=0.05). Compost increased the fatty acids indicating actinomycetes and vascular arbuscular fungi, and ratio of cy19:0/18:1w7c and monounsaturated fatty acids/saturated fatty acids in soils in PLFA analysis. Bark increased soil fungal indicators in PLFA analysis (P=0.05). Principal component analysis of Biolog EcoPlate data and PLFA differentiated the compost- and bark-amended soils from other organic matteramended soils especially the soil incorporated with compost. More researches are needed to use bark for improving soil microbial properties because the soil chemical and microbiological properties caused by compost and bark are significantly different.

Stable Macro-aggregate in Wet Sieving and Soil Properties (습식체별에 안정한 대입단과 토양특성과의 관계)

  • Han, Kyung-Hwa;Cho, Hyun-Jun;Lee, Hyub-Sung;Oh, Dong-Shig;Kim, Lee-Yul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.4
    • /
    • pp.255-261
    • /
    • 2007
  • Soil aggregates, resulting from physico-chemical and biological interactions, are important to understand carbon dynamics and material transport in soils. The objective of this study is to investigate stable macro-aggregate (> 0.25mm diameter) in wet sieving (SM) and their relation to soil properties in 15 sites. The clay contents of soils were ranged from 1% to 33%, and their land uses included bare and cultivated lands of annual upland crops, orchard, and grass. Undisturbed 3 inch cores with five replicates were sampled at topsoil (i.e., 0- to 10-cm depth), for analyzing SM and physico-chemical properties, after in situ measurement of air permeability. SM of sandy soils, with clay content less than 2%, was observed as 0%. Except the sandy soils, SM of soils mainly depended on land uses, showing 27%~35% in soils with annual plants such as vegetable and corn, 51% in orchard, and 75% in grass. This sequence of SM is probably due to the different strength of soil disturbance like tillage with different land uses. SM had significant correlation with cation exchange capacity, organic matter content, sand, clay, silt, bulk density, and exchangeable potassium (K) and magnesium (Mg), whereas fluctuating properties with fertilization such as pH, EC, and water soluble phosphorus weren't significantly correlated to the SM. Particularly, exchangeable calcium (Ca) had significant relation with SM, only except soils with oversaturating Ca. This study, therefore, suggested that SM could perceive different land uses and the change of soil properties in soils, necessarily considering soil textures and Ca over-saturation.

Analysis of Environmental Characteristics for Habitat Conservation and Restoration of Near Threatened Sparganium japonicum (준위협종 긴흑삼릉의 서식지 보전과 복원을 위한 환경 특성 분석)

  • Kim, Seohyeon;Kim, Jae Geun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.18 no.1
    • /
    • pp.37-51
    • /
    • 2015
  • Sparganium japonicum Rothert. is designated as a near threatened species by the National Institute of Biological Resources and is restrictively distributed in South Korea. To conserve and restore habitats of this plant, we investigated environmental characteristics and vegetation at five habitats during the growing season. Thirty plant species from seventeen families were found in the S. japonicum community. The species frequently found in this community included Utricularia vulgaris, Potamogeton distinctus, Phragmites japonica, Cicuta virosa, Persicaria thunbergii, Phragmites communis, Hydrilla verticillata. Maximum height of this plant reached at August and average height at five habitats is 120 cm at this time. Water and soil environmental factors showed low values compared with that of other wetlands. S. japonicum lived in not only shallow water level but also deep water level. These results can be helpful for S. japonicum habitat conservation and restoration.

Effects of Indirect Wastewater Reuse on Water Quality and Soil Environment in Paddy Fields (간접하수재이용에 따른 논에서의 수질 및 토양환경 영향 분석)

  • Jeong, Han Seok;Park, Ji Hoon;Seong, Choung Hyun;Jang, Tae Il;Kang, Moon Seong;Park, Seung Woo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.3
    • /
    • pp.91-104
    • /
    • 2013
  • The objectives of this study were to monitor and assess the environmental impacts of indirect wastewater reuse on water quality and soil in paddy fields. Yongin monitoring site (YI) irrigated from agricultural reservoir and Osan monitoring site (OS) irrigated with treated wastewater diluted with stream water were selected as control and treatment, respectively. Monitoring results for irrigation water quality showed a significant statistical difference in salinity, exchangeable cation and nutrients. Pond water quality showed a similar tendency with irrigation water except for the decreased difference in nutrients due to the fertilization impact. Soil chemical properties mainly influenced by fertilization activity such as T-N, T-P, and $P_2O_5$ were changed similarly in soil profiles of both monitoring sites, while the properties, EC, Ca, Mg, and Na, mainly effected by irrigation water quality showed a considerable change with time and soil depth in treatment plots. Heavy metal contents in paddy soil of both control and treatment did not exceed the soil contamination warning standards. This study could contribute to suggest the irrigation water quality standards and proper agricultural practices including fertilization for indirect wastewater reuse, although long-term monitoring is needed to get more scientific results.

Management Guidelines of Natural Monuments Old Trees through an Ananlysis of Growing Environments II -A Focus on Seoul, Incheon and Gyeonggi provinces- (생육환경 분석을 통한 천연기념물 노거수의 관리방안 II -서울·인천·경기지역을 중심으로-)

  • Kang, Hyun-Kyung;Lee, Seung-Je
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.2
    • /
    • pp.36-45
    • /
    • 2004
  • This study was conducted to formulate management guidelines for monumental old trees in Korea through analysis of growing environments. A total of 20 old trees designated as natural monuments in Seoul, Incheon, and Gyeonggi provinces were surveyed for biological characteristics, surrounding environments, root collar conditions, tree health, and soil characteristics. Relationships among root collar conditions, tree health, and soil characteristics were analyzed by correlation. The old solitary trees designated as natural monuments included Pinus bungeana(4 trees), Juniperus chinensis(3 trees), Ginkgo biloba(3 trees), Poncirus trifoliata(2 trees), Actinidia arguta, Wisteria floribunda, Thuja orientalis, Quercus variabilis, Sophora japonica, Fraxinus rhynchophylla, Zelkova serrata, and Pinus densiflora. The tree height ranged from 3.56 to 67m, and root collar diameter ranged from 1.01 to 15.2m. The monumental old trees were growing on the various sites ranging from gardens, historical sites, open agricultural fields, mountain hills, to near the ocean beaches and streams. The coverage of bald land ranged from 50 to 100%, and depth of filled soil around the root collar ranged from 0 to 50cm. Tree health was expressed as the amount of branch dieback, cavity development, detachment of cambial tissue, infliction by diseases and insects. The branch dieback ranged from 5 to 20%, cavity development ranged from 10 to 100$cm^3$, detachment of cambial tissue ranged from 5 to 45%, and infliction by diseases and insects ranged from 5 to 20%. Soil pH ranged from 5.9 to 8.3, organic matter contents from 12 to 56%, phosphorus contents from 104 to 618ppm, while soil compaction ranged from 7 to 28mm. Results of correlation analysis showed that coverage of bald land was the most serious factor to deteriorate the cavity development and detachment of cambial tissue. In addition, chemical properties of soils seemed to be related to the health of the trees.

Effect of Fly Ash Fertilizer on Paddy Soil Quality and Rice Growth (비산재로 제조한 비료가 논토양 질과 벼 생육에 미치는 영향)

  • Oh, Se Jin;Yun, Hyun Soo;Oh, Seung Min;Kim, Sung Chul;Kim, Rog Young;Seo, Yung Ho;Lee, Kee Suk;Ok, Yong Sik;Yang, Jae E.
    • Journal of Applied Biological Chemistry
    • /
    • v.56 no.4
    • /
    • pp.229-234
    • /
    • 2013
  • Coal ash can be added to agricultural soils to increase the chemical properties of soil such as pH, cation exchange capacity and nutrient availability of - B, Ca, Mo etc-. Therefore, the main purpose of this study was to evaluate the feasibility of fly ash as a soil amendment in paddy soils. Selected fly ash was mixed with bentonite and calcium hydroxide at the ratio of 80:15:5 (w/w) and manufactured as a pellet type at the size of 10 mm. Field experiments were conducted to evaluate the effects of fly ash fertilizer on the soil quality and crop growth compare to the control (no fertilizer) and, - traditional fertilizer. Results showed that soil pH and organic matter in paddy soils after applying the manufactured fly ash fertilizer were not increased compared to the other two treatments. However, the concentration of available phosphate and silicate in paddy soils were higher than those of the control and traditional fertilization. With regard to crop growth, no significant difference was observed between three different treatments. However, the content of protein in the rice grain cultivated with the fly ash fertilizer was higher than in the rice cultivated by other two treatments. Overall, fly ash fertilizer could increase the concentration of available silicate and phosphate in the paddy soil and improve the rice quality. In conclusion, fly ash can be utilized in agricultural soils as soil amendment, especially in the rice paddy soil.

Change of Vegetation and Soil Characteristics of Green Roofs in Dongguk University (동국대학교 옥상녹화 지역의 식생 및 토양특성 변화)

  • Lee, Sang-Jin;Park, Gwan-Soo;Kim, Dong-Il;Lee, Dong-Kun;Kil, Sung-Ho;Jang, Seong-Wan;Park, Beom-Hwan;Yun, Jun-Young;Jang, Kwan-Woo;Lee, Ho-Young;Kwon, Oh-Jung
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.1
    • /
    • pp.193-206
    • /
    • 2013
  • This study was to provide the base data on the status of vegetations and soils in green roofs by analyzing the soil and vegetation characteristics of 4 green roofs in Dongguk University in September 2012. Sanglokwon(SW), Dongguk Hall(DH), University Library(UL), and Information and Culture Hall P(IC) were established in 2005, 2008, 2009, and 2010, respectively. The areas of green roofs were $700m^2$, $2,300m^2$, $1,240m^2$, and $640m^2$ in SW, DH, UL, and IC respectively. The investigated floras of vascular plants were 26 families, 55 genera, 65 species in Sanglokwon(SW), 53 families, 99 genera, 112 species in Dongguk Hall(DH), 43 families, 77 genera, 84 species in University Library(UL), and 41 families, 71 genera, 75 species in Information and Culture Hall P(IC), respectively. A positive correlation is shown between the number of plant species and planting area. Total nitrogen, organic matter, and potassium in soil have positive correlation with the number of plant species. The number of plant species was proportional to area and increased more than twice after planting. About a quarter of the invaded plants (including native and naturalized species) were naturalized plants. The total soil depths including vegetation soil and drainage soil at SW, DH, UL, and IC were 20cm, 10cm, 10cm, and 8cm, respectively. The depths of vegetation soil at SW, DH, UL, and IC were <7cm, <3cm, <2cm, and <2cm respectively. The soil pH in vegetation soil ranged from 5.22 to 5.36, and from 6.13 to 6.39 in drainage soil. Available-P concentration ranged from 10.17 to 189.77mg/kg in vegetation soil and from 6.70 to 81.17mg/kg in drainage soil. Carbon concentration in vegetation soil ranged from 2.93 to 9.70%, and 2.93 to 9.70% in drainage soil. Carbon contents in 20cm, 10cm, 10cm, and 8cm soil depths were $2.62kg/m^2$, $1.89kg/m^2$, $0.50kg/m^2$, and $0.53kg/m^2$ at SW, DH, UL, and IC, respectively.

Analysis of Bacterial Diversity and Communities Associated with Tricholoma matsutake Fruiting Bodies by Barcoded Pyrosequencing in Sichuan Province, Southwest China

  • Li, Qiang;Li, Xiaolin;Chen, Cheng;Li, Shuhong;Huang, Wenli;Xiong, Chuan;Jin, Xing;Zheng, Linyong
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.1
    • /
    • pp.89-98
    • /
    • 2016
  • Endophytes play an important role in the growth and development of the host. However, the study of endophytes is mostly focused on plants, and reports on bacteria associated with fungi are relatively rare. We studied the bacteria associated with fruiting bodies of Tricholoma matsutake picked from seven main T. matsutake-producing areas in Sichuan, China, by barcoded pyrosequencing. About 8,272 reads were obtained per sample, representing 40 phyla, 103 classes, and 495 genera of bacteria and archaea, and 361-797 operational taxonomic units were observed at a 97% similarity level. The bacterial community was always both more abundant and more diverse than the archaeal community. UniFrac analysis showed there were some difference of bacterial communities among the samples sites. Three bacterial phyla, Proteobacteria, Bacteroidetes, and Firmicutes, were dominant in all samples. Correlation analysis showed there was a significant correlation between some soil properties and bacterial community associated with T. matsutake. This study demonstrated that the bacteria associated with T. matsutake fruiting bodies were diversified. Among these bacteria, we may find some strains that can promote the growth of T. matsutake.

Seasonal Change of Sediment Microbial Communities and Methane Emission in Young and Old Mangrove Forests in Xuan Thuy National Park

  • Cuong Tu Ho;Unno Tatsuya;Son Giang Nguyen;Thi-Hanh Nguyen;Son Truong Dinh;Son Tho Le;Thi-Minh-Hanh Pham
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.580-588
    • /
    • 2024
  • Microbial communities in mangrove forests have recently been intensively investigated to explain the ecosystem function of mangroves. In this study, the soil microbial communities under young (<11 years-old) and old (>17 years-old) mangroves have been studied during dry and wet seasons. In addition, biogeochemical properties of sediments and methane emission from the two different mangrove ages were measured. The results showed that young and old mangrove soil microbial communities were significantly different on both seasons. Seasons seem to affect microbial communities more than the mangrove age does. Proteobacteria and Chloroflexi were two top abundant phyla showing >15%. Physio-chemical properties of sediment samples showed no significant difference between mangrove ages, seasons, nor depth levels, except for TOC showing significant difference between the two seasons. The methane emission rates from the mangroves varied depending on seasons and ages of the mangrove. However, this did not show significant correlation with the microbial community shifts, suggesting that abundance of methanogens was not the driving factor for mangrove soil microbial communities.

Groundwater Pollution Analysis Using Patent Map (특허맵을 이용한 지하수 오염현황 분석 연구)

  • Im, Eun Jung;Kim, Sung Hyun;Hyeon, Dong Hun
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.4
    • /
    • pp.601-607
    • /
    • 2012
  • Advance countries are trying hard to acquire intellectual properties on the technologies for prior occupation in the future industry. Patent contains meaningful technical achievement. Patent map is required to propose the strategies for efficient development and use of these technologies. In this paper, analysis of foreign and domestic patents for groundwater pollution technologies analysis. It was analyzed by utilizing two processes of patent map and paper analysis. The patents in Korea, USA, Japan, China, and Europe were searched. It was found that the number of patent for groundwater pollution was USA patent 44.3%, Japan patent 17.1%, China 13.3%, EU 1.9% and Korea patent 23.3%, respectively.