DOI QR코드

DOI QR Code

Seasonal Change of Sediment Microbial Communities and Methane Emission in Young and Old Mangrove Forests in Xuan Thuy National Park

  • Cuong Tu Ho (Graduate University of Science and Technology, Vietnam Academy of Science and Technology) ;
  • Unno Tatsuya (Department of Microbiology, Chungbuk National University) ;
  • Son Giang Nguyen (Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology) ;
  • Thi-Hanh Nguyen (Institute of Chemistry, Vietnam Academy of Science and Technology) ;
  • Son Truong Dinh (Vietnam National University of Agriculture) ;
  • Son Tho Le (College of Forestry Biotechnology, Vietnam National University of Forestry) ;
  • Thi-Minh-Hanh Pham (Institute of Mechanics, Vietnam Academy of Science and Technology)
  • Received : 2023.11.29
  • Accepted : 2023.12.21
  • Published : 2024.03.28

Abstract

Microbial communities in mangrove forests have recently been intensively investigated to explain the ecosystem function of mangroves. In this study, the soil microbial communities under young (<11 years-old) and old (>17 years-old) mangroves have been studied during dry and wet seasons. In addition, biogeochemical properties of sediments and methane emission from the two different mangrove ages were measured. The results showed that young and old mangrove soil microbial communities were significantly different on both seasons. Seasons seem to affect microbial communities more than the mangrove age does. Proteobacteria and Chloroflexi were two top abundant phyla showing >15%. Physio-chemical properties of sediment samples showed no significant difference between mangrove ages, seasons, nor depth levels, except for TOC showing significant difference between the two seasons. The methane emission rates from the mangroves varied depending on seasons and ages of the mangrove. However, this did not show significant correlation with the microbial community shifts, suggesting that abundance of methanogens was not the driving factor for mangrove soil microbial communities.

Keywords

Acknowledgement

This work was supported by the Vietnam Academy of Science and Technology (VAST, Vietnam) for the project No VAST07.04/19-20. This work also got supported by International Environmental Research Institute (Gwangju Institute of Science and Technology, Gwangju, Republic of Korea). We would like also to thank the sampling team including Mr. Tien-Hung Nguyen, Mr. Vu-Thang Nguyen, Mr. Manh-Chien Truong, Mr. Song-Ha Dang, and Mr. Cong-Dien Duong.

References

  1. Holguin G, Vazquez P, Bashan Y. 2001. The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems?: an overview. Biol. Fertil. Soils 33: 265-278. https://doi.org/10.1007/s003740000319
  2. Wang Y, Sheng HF, He Y, Wu JY, Jiang YX, Tam NFY, et al. 2012. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags. Appl. Environ. Microbiol. 78: 8264-8271. https://doi.org/10.1128/AEM.01821-12
  3. Jiang XT, Peng X, Deng GH, Sheng HF, Wang Y, Zhou HW, et al. 2013. Illumina sequencing of 16S rRNA tag revealed spatial variations of bacterial communities in a mangrove wetland. Microb. Ecol. 66: 96-104. https://doi.org/10.1007/s00248-013-0238-8
  4. Webster G, Rinna J, Roussel EG, Fry JC, Weightman AJ, Parkes RJ. 2010. Prokaryotic functional diversity in different biogeochemical depth zones in tidal sediments of the Severn Estuary, UK, revealed by stable-isotope probing. FEMS Microbiol. Ecol. 72: 179-197. https://doi.org/10.1111/j.1574-6941.2010.00848.x
  5. Bhattacharyya A, Majumder NS, Basak P, Mukherji S, Roy D, Nag S, et al. 2015. Diversity and distribution of archaea in the mangrove sediment of sundarbans. Archaea 2015: 968582.
  6. Mai STT, Kim CNT, Hong L Le, Viet HT, Thi QP, Thuy VNT, et al. 2020. Current status of mangroves in the context of climate change in xuan thuy national park buffer zone, nam dinh province, vietnam. APAC 2019 - Proc. 10th Int. Conf. Asian Pacific Coasts 1221-1228.
  7. Ha TH, Marchand C, Aime J, Dang HN, Phan NH, Nguyen XT, et al. 2018. Belowground carbon sequestration in a mature planted mangroves (Northern Viet Nam). For. Ecol. Manage. 407: 191-199. https://doi.org/10.1016/j.foreco.2017.06.057
  8. Phan NH. 2004. Mangrove ecosystem in the Red River coastal zone, biodiversity, ecology, socio-economics, management and education. Agricultural Publishing House.
  9. Ha TH, Marchand C, Aime J, Cuc NTK. 2018. Seasonal variability of CO2 emissions from sediments in planted mangroves (Northern Viet Nam). Estuar. Coast. Shelf Sci. 213: 28-39. https://doi.org/10.1016/j.ecss.2018.08.006
  10. Tue NT, Quy TD, Hamaoka H, Nhuan MT, Omori K. 2012. Sources and exchange of particulate organic matter in an estuarine mangrove ecosystem of Xuan Thuy national park, Vietnam. Estuaries Coasts 35: 1060-1068. https://doi.org/10.1007/s12237-012-9487-x
  11. Tue NT, Ngoc NT, Quy TD, Hamaoka H, Nhuan MT, Omori K. 2012. A cross-system analysis of sedimentary organic carbon in the mangrove ecosystems of Xuan Thuy National Park, Vietnam. J. Sea Res. 67: 69-76. https://doi.org/10.1016/j.seares.2011.10.006
  12. Nguyen HT, Yoneda R, Ninomya I, Harada K, Dao T Van, Mai TS, et al. 2004. The effects of stand-age and inundation on carbon accumulation in mangrove plantation soil in Namdinh, Northern Vietnam. Tropics 14: 21-37. https://doi.org/10.3759/tropics.14.21
  13. Rosentreter JA, Maher DT, Erler D V., Murray RH, Eyre BD. 2018. Methane emissions partially offset "blue carbon" burial in mangroves. Sci. Adv. 4: eaao4985.
  14. Thi Kim Cuc N, Thi Hien H. 2021. Stand structure and above ground biomass of Kandelia obovata Sheue, H.Y. Liu & J. Yong mangrove plantations in Northern, Viet Nam. For. Ecol. Manage. 483: 118720.
  15. Jacotot A, Marchand C, Allenbach M. 2018. Tidal variability of CO2 and CH4 emissions from the water column within a Rhizophora mangrove forest (New Caledonia). Sci. Total Environ. 631-632: 334-340. https://doi.org/10.1016/j.scitotenv.2018.03.006
  16. Smith KA, Cresser MS. 2003. Measurement of trace gases, I: gas analysis, chamber methods, and related procedures, pp. 394-423. Soil and environmental analysis, 3rd Ed. CRC Press.
  17. Allen DE, Dalal RC, Rennenberg H, Meyer RL, Reeves S, Schmidt S. 2007. Spatial and temporal variation of nitrous oxide and methane flux between subtropical mangrove sediments and the atmosphere. Soil Biol. Biochem. 39: 622-631. https://doi.org/10.1016/j.soilbio.2006.09.013
  18. Wang H, Liao G, D'Souza M, Yu X, Yang J, Yang X, et al. 2016. Temporal and spatial variations of greenhouse gas fluxes from a tidal mangrove wetland in Southeast China. Environ. Sci. Pollut. Res. 23: 1873-1885. https://doi.org/10.1007/s11356-015-5440-4
  19. Gomes NCM, Cleary DFR, Pires ACC, Almeida A, Cunha A, Mendonca-Hagler LCS, et al. 2014. Assessing variation in bacterial composition between the rhizospheres of two mangrove tree species. Estuar. Coast. Shelf Sci. 139: 40-45. https://doi.org/10.1016/j.ecss.2013.12.022
  20. Sanka Loganathachetti D, Sadaiappan B, Poosakkannu A, Muthuraman S. 2016. Pyrosequencing-based seasonal observation of prokaryotic diversity in Pneumatophore-associated soil of Avicennia marina. Curr. Microbiol. 72: 68-74. https://doi.org/10.1007/s00284-015-0920-9
  21. Alzubaidy H, Essack M, Malas TB, Bokhari A, Motwalli O, Kamanu FK, et al. 2016. Rhizosphere microbiome metagenomics of gray mangroves (Avicennia marina) in the Red Sea. Gene 576: 626-636. https://doi.org/10.1016/j.gene.2015.10.032
  22. Zhang Y, Yang Q, Ling J, Van Nostrand JD, Shi Z, Zhou J, et al. 2017. Diversity and structure of diazotrophic communities in mangrove rhizosphere, revealed by high-throughput sequencing. Front. Microbiol. 8: 2032.
  23. Wu P, Xiong X, Xu Z, Lu C, Cheng H, Lyu X, et al. 2016. Bacterial communities in the rhizospheres of three mangrove tree species from Beilun Estuary, China. PLoS One 11: e0164082.
  24. Gomes NCM, Flocco CG, Costa R, Junca H, Vilchez R, Pieper DH, et al. 2010. Mangrove microniches determine the structural and functional diversity of enriched petroleum hydrocarbon-degrading consortia. FEMS Microbiol. Ecol. 74: 276-290. https://doi.org/10.1111/j.1574-6941.2010.00962.x
  25. Nga BT, Tinh HQ, Tam DT, Scheffer M, Roijackers R. 2005. Young mangrove stands produce a large and high quality litter input to aquatic systems. Wetl. Ecol. Manag. 13: 569-576. https://doi.org/10.1007/s11273-004-6073-4
  26. Dang H, Lovell CR. 2016. Microbial surface colonization and biofilm development in marine environments. Microbiol. Mol. Biol. Rev. 80: 91-138. https://doi.org/10.1128/MMBR.00037-15
  27. Liu Y, Jiang JT, Xu CJ, Liu YH, Song XF, Li H, et al. 2012. Rheinheimera longhuensis sp. nov., isolated from a slightly alkaline lake, and emended description of genus Rheinheimera Brettar et al. 2002. Int. J. Syst. Evol. Microbiol. 62: 2927-2933. https://doi.org/10.1099/ijs.0.036020-0
  28. Hayashi K, Busse HJ, Golke J, Anderson J, Wan X, Hou S, et al. 2018. Rheinheimera Salexigens sp. nov., isolated from a fishing hook, and emended description of the genus Rheinheimera. Int. J. Syst. Evol. Microbiol. 68: 35-41. https://doi.org/10.1099/ijsem.0.002412
  29. Merchant MM, Welsh AK, McLean RJC. 2007. Rheinheimera texasensis sp. nov., a halointolerant freshwater oligotroph. Int. J. Syst. Evol. Microbiol. 57: 2376-2380. https://doi.org/10.1099/ijs.0.65045-0
  30. Liang B, Wang LY, Mbadinga SM, Liu JF, Yang SZ, Gu JD, et al. 2015. Anaerolineaceae and Methanosaeta turned to be the dominant microorganisms in alkanes-dependent methanogenic culture after long-term of incubation. AMB Express 5: 117.