• Title/Summary/Keyword: Soil biological properties

Search Result 284, Processing Time 0.02 seconds

Estimating of the Greenhouse Gas Mitigation and Function of Water Resources Conservation through Conservation of Surface Soils Erosion and Policy Suggestion (표토유실 보전을 통한 온실가스배출 저감과 수자원 보전 기능의 산출 및 정책제안)

  • Oh, Seung-Min;Kim, Hyuck Soo;Lee, Sang-Pil;Lee, Jong Geon;Jeong, Seok Soon;Lim, Kyung Jae;Kim, Sung-Chul;Park, Youn Shik;Lee, Giha;Hwang, Sang-Il;Yang, Jae-E
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.6
    • /
    • pp.74-84
    • /
    • 2017
  • Soil erosion is often extreme in Korea due to high rainfall intensities and steep slopes, and climate change has also increased the risk of erosion. Despite its significane, erosion-induced soil organic carbon (SOC) emission and water resource loss are not well understood, along with the lack of an integrated surface soil erosion protection policy. Therefore, to design adequate protection policies, land users, scientists, engineers and decision makers need proper information about surface soil and watershed properties related to greenhouse gas emission potential and water conservation capability, respectively. Assuming the total soil erosion of $346Tg\;yr^{-1}$, soil organic matter (SOM) content of 2% (58% of SOM is SOC), and mineralization rate of 20% of the displaced carbon, erosion-induced carbon emission could reach $800Gg\;C\;yr^{-1}$. Also the available water capacity of the soil was estimated to be 15.8 billion tons, which was 14 times higher than the yearly water supply demand in Seoul, Korea. Therefore, in order to prevent of soil erosion, this study proposes a three-stage plan for surface soil erosion prevention: 1) classification of soil erosion risk and scoring of surface soil quality, 2) selection of priority areas for conservation and best management practices (BMP), and 3) application of BMP and post management.

Effect of Rice Bran and Wood Charcoal on Soil Properties and Yield of Continuous Cropping of Red Pepper

  • Won, J.G.;Jang, K.S.;Hwang, J.E.;Kwon, O.H.;Jeon, S.G.;Park, S.G.;Park, K.C.;Suh, Y.J.
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.spc
    • /
    • pp.218-221
    • /
    • 2011
  • To improve the soil properties of physical and microbial community rice bran and wood charcoal were applied in the continuously cultivated plastic film house soil. Soil physical properties were improved by application of rice bran and charcoal compared to chemical fertilizer application (control) by 8~14% in bulk density and 5~9% in soil porosity. Changes in the biological ratio indexes of fatty acids in the soils were detected depending on the inputted materials. Especially in application of rice bran including mixture with charcoal, much more fungi and less bacteria were detected and the ratio of fungi to bacteria was increased, suggesting the more organic carbon metabolically active in these treatments. The high ratio of aerobe to anaerobe suggested the better aerobic conditions were in the soil inputted wood charcoal. From these results, it is important and possible to select some materials for the organic pepper cultivation, which may improve the poor condition soil.

Fly Ash Application for Reduction of Acid Mine Drainage (AMD) as Runoff and Leachate Released from Mine Waste Disposal Sites

  • Oh, Se Jin;Moon, Sung Woo;Oh, Seung Min;Kim, Sung Chul;Ok, Yong Sik;Lee, Bup Yeol;Lee, Sang Hwan;Yang, Jae E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.533-539
    • /
    • 2014
  • Mine wastes such as acid mine drainage (AMD) can cause the detrimental effects on surrounding environment, thereby eventually threatening human health. Main objective of this study was to evaluate the neutralizing effect of fly ash (FA) as a stabilizing material AMD. Field plot was constructed in a coal waste depot which has caused aluminium-whitening adjacent to the stream. Different mixing ratios of FA were applied on a top of the soil, and then the physicochemical properties of runoff and soil were monitored. Constructed plots were as following: control (mine waste only (W)), mine waste + 20% ($w\;w^{-1}$)of FA (WC20M), mine waste + 40% ($w\;w^{-1}$)of FA (WC40M), and WC40M dressed with a fresh soil at the top (WC40MD). Result showed that initial pH of runoff in control was 5.09 while that in WC40M (7.81) was significantly increased. For a plot treated with WC40M, the concentration of Al in runoff was decreased to $0.22mg\;L^{-1}$ compared to the W as the control ($4.85mg\;L^{-1}$). Moreover, the concentration of Fe was also decreased to less than half at the WC40M compared to the control. Application of FA can be useful for neutralizing AMD and possibly minimizing adverse effect of AMD in mining area.

A study on vegetation and soil environmental characteristics of green roof in Daejeon Metropolitan City (대전광역시 옥상녹화 지역의 식생현황 및 토양환경 특성에 관한 연구)

  • Lee, Sang-Jin;Park, Gwan-Soo;Lee, Dong-Kun;Jang, Seong-Wan;Park, Beom-Hwan;Lee, Hang-Goo;Yun, Joon-Young;Jang, Kwan-Woo;Lee, Seung-Woo;Lee, Ho-Young;Kwon, Oh-Jung;Lee, Sook-Mee;Kil, Sung-Ho
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.4
    • /
    • pp.641-649
    • /
    • 2011
  • This study was to analyze the soil environmental characteristics and vegetation status of green roof in Daejeon Metropolitan City. The investigated floras of vascular plants are 17 families, 26 genera, 28 species in Seo-Gu Daejeon District Office Building (SG), 25 families, 49 genera, 56 species in Galma Public Library (GP), and 34 families, 57 genera, 60 species in Daejeon City Hall (DC) respectively. Although the larger area shows the more numbers of species in introduced plants and naturalized plant, the naturalized plant ratios were similar with each other. They were 10.71%, 10.71%, and 11.67% at SG, GP, and DC respectively. As a result of analysis on soil physical property, soil depths including vegetation soil and drainage soil of 3 green roofs were 30cm. The depths of vegetation soil at SG, GP, and DC were 0~8cm, 0~10cm, 0~10cm respectively. As a results of soil chemical properties of our study, soil pH of vegetation soil and drainage soil were a range of 6.42 and 7.43, and a range of 6.55 and 7.43 on the average respectively. Available-P contents of vegetation soil and drainage soil were a range of 153.33 and 366.33mg/kg, and a range of 136.67 and 242.67 mg/kg which is very high, respectively. Carbon contents in soil at vegetation soil and drainage soil were a range of 3.16 and 6.38%, and a range of 1.63 and 2.47% respectively. Carbon storage per square meter within 30 cm were 2.76 kg, 2.99 kg, and 3.66 kg at SG, GP, and DC respectively.

Effect of Long Term Fertilization on Microbial Biomass, Enzyme Activities, and Community Structure in Rice Paddy Soil

  • Lee, Chang Hoon;Kang, Seong Soo;Jung, Ki Youl;Kim, Pil Joo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.487-493
    • /
    • 2013
  • The effects of long-term fertilization on soil biological properties and microbial community structure in the plough layer in a rice paddy soil in southern Korea were investigated in relation to the continuous application of chemical fertilizers (NPK), straw based compost (Compost), combination these two (NPK + Compost) for last 40 years. No fertilization plot (Control) was installed for comparison. Though fertilization significantly improved rice productivity over control, the long-term fertilization of NPK and compost combination was more effective on increasing rice productivity and soil nutrient status than single application of compost or chemical fertilizer. All fertilization treatments had shown significant improvement in soil microbial properties, however, continuous compost fertilization markedly increased soil enzyme and microbial activities as compared to sole chemical fertilization. Results of microbial community structure, evaluated by EL-FAME (ester-linked fatty acid methyl esters) method, revealed big difference among Control, NPK, and Compost. However, both Compost and Compost+NPK treatments belonged to the same cluster after statistical analysis. The combined application of chemical fertilizer and organic amendments could be more rational strategy to improve soil nutrient status and promote soil microbial communities than the single chemical fertilizer or compost application.

Mobility of Pesticides from Soil in Different Slope by Simulated Rainfall Under Field Conditions (포장에서 인공강우를 이용한 경사도별 농약의 이동 특성 연구)

  • Kim, Seong-Soo;Kim, Tae-Han;Lee, Sang-Min;Park, Hong-Ryeol;Park, Dong-Sik;Lim, Chun-Keun;Hur, Jang-Hyun
    • The Korean Journal of Pesticide Science
    • /
    • v.12 no.1
    • /
    • pp.24-33
    • /
    • 2008
  • In this study, the mobility of seven pesticides from soil in different slopes was investigated by simulated rainfall under field conditions. Simulated rainfall subjected to $22\;mm\;hr^{-1}$ was treated using rainfall simulator after 12 hr of pesticide treatment. Amounts of the pesticides were measured in run-off water samples. The soil samples collected before and after rainfall from upper, middle and lower parts and three different depths of sloped-plot were also analyzed. At result, the order of the amount of pesticide residues was $0{\sim}15$ > $15{\sim}30$ > $30{\sim}45\;cm$ of soil depth and no pattern was shown in upper, middle and lower, and different slopes in soil samples. all pesticides from the run-off water samples collected from soils were detected maximum 96% within 60 minutes after first collection except carbendazim and cypermethrin which have the lowest water solubilities. These results revealed that mobility of pesticides can be dependant mainly on soil textures and physicochemical properties of pesticides. Therefore, it can be suggested that selection of pesticides should be considered for properties of pesticide in the alpine and sloped-land.

Estimation of Initial Concentrations of Phenanthrene and Atrazine from Soil Properties and Bioavailability During Aging

  • Chung, Namhyun
    • Journal of Applied Biological Chemistry
    • /
    • v.44 no.4
    • /
    • pp.194-198
    • /
    • 2001
  • Contaminated sites are often abandoned for an extended period of time, thus organopollutants becoming sequestered. The information on the initial concentrations of the contaminants would be helpful for the economic bioremediation of the chemicals. The present study estimated the initial concentrations of atrazine and phenanthrene through multiple regression analyses using soil properties and the amount of chemicals available in situ. Percentage mineralized or extracted was best correlated with organic C or logarithm of organic C, and the $R^2$ values were 0.548 and 0.894 for atrazine and phenanthrene, respectively. Estimation of the initial concentration of the chemicals was then calculated from both the percentage mineralized or extracted and the amount of chemicals extracted or mineralized. Results showed that the estimation of the initial concentration of the chemical at the time of contamination is feasible.

  • PDF

Kinetic Biodegradation of Polycyclic Aromatic Hydrocarbons for Five Different Soils under Aerobic Conditions in Soil Slurry Reactors

  • Ha, Jeong Hyub;Choi, Suk Soon
    • Applied Chemistry for Engineering
    • /
    • v.32 no.5
    • /
    • pp.581-588
    • /
    • 2021
  • In this study, soil slurry bioreactors were used to treat soils containing 16 polycyclic aromatic hydrocarbons (PAHs) for 35 days. Five different soil samples were taken from manufactured gas plant (MGP) and coal tar disposal sites. Soil properties, such as carbon content and particle distribution, were measured. These properties were significantly correlated with percent biodegradation and degradation rate. The cumulative amount of PAH degraded (P), degradation rate (Km), and lag phase (𝜆) constants of PAHs in different MGP soils for 16 PAHs were successfully obtained from nonlinear regression analysis using the Gompertz equation, but only those of naphthalene, anthracene, acenaphthene, fluoranthene, chrysene, benzo[k]fluoranthene, benzo(a)pyrene, and benzo(g,h,i)perylene are presented in this study. A comparison between total non-carcinogenic and carcinogenic PAHs indicated higher maximum amounts of PAH degraded in the former than that in the latter owing to lower partition coefficients and higher water solubilities (S). The degradation rates of total non-carcinogenic compounds for all soils were more than four times higher than those of total carcinogenic compounds. Carcinogenic PAHs have the highest partitioning coefficients (Koc), resulting in lower bioavailability as the molecular weight (MW) increases. Good linear relationships of Km, 𝜆, and P with the octanol-water partitioning coefficient (Kow), MW, and S were used to estimate PAH remaining, lag time, and biodegradation rate for other PAHs.

The changes of soil salinity in the Pinus densiflora forest after seawater spread using a fire-fight helicopter

  • Park, Jeong Soo;Koo, Kyu-Sang;Lee, Eun Ju
    • Journal of Ecology and Environment
    • /
    • v.38 no.4
    • /
    • pp.443-450
    • /
    • 2015
  • The east coast of the Korean Peninsula is susceptible to fires because of the low rainfall in winter and spring, and large forest fires have occurred in this area. Lack of fresh water to combat fires has hampered efforts to prevent widespread forest fires in this region. Seawater has not been used as a suppressant because of possible detrimental effects of salt. We investigated the mobility of saline water in the forest soil and their effect on the microbial activity. Using a fire-fighting helicopter, seawater was sprayed over three plots (50 × 100 m) located on the eastern slope of the Baekdu mountain range in South Korea in April, 2011. We sampled the soil in April 4, May 20, and August 5 to determine the amount of salt that remained in the soil. The electrical conductivity value of the soil decreased to <400 μS/cm over a 1-month period. Approximately, four months after the application of seawater, the electrical conductivity value and Na+ content in all treatment plots did not significantly differ to those of the control plot, and total microbial activity also recovered to that of the control. Our results indicate that the amount of rainfall, soil physical-chemical properties, and topological factors may be a critical factor determining the mobility of saline water in forest soil.

Development of Soil Organic Carbon Storage Estimation Model Using Soil Characteristics (토양 특성을 이용한 토양유기탄소저장량 산정 모형 개발)

  • Lee, Taehwa;Kim, Sangwoo;Shin, Yongchul;Jung, Younghun;Lim, Kyoung-Jae;Yang, Jae E;Jang, Won Seok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.6
    • /
    • pp.1-8
    • /
    • 2019
  • Carbon dioxide is one of the major driving forces causing climate changes, and many countries have been trying to reduce carbon dioxide emissions from various sources. Soil stores more carbon dioxide(two to three times) amounts than atmosphere indicating that soil organic carbon emission management are a pivotal issue. In this study, we developed a Soil Organic Carbon(SOC) storage estimation model to predict SOC storage amounts in soils. Also, SOC storage values were assessed based on the carbon emission price provided from Republic Of Korea(ROK). Here, the SOC model calculated the soil hydraulic properties based on the soil physical and chemical information. Base on the calculated the soil hydraulic properties and the soil physical chemical information, SOC storage amounts were estimated. In validation, the estimated SOC storage amounts were 486,696 tons($3.526kg/m^2$) in Jindo-gun and shown similarly compared to the previous literature review. These results supported the robustness of our SOC model in estimating SOC storage amounts. The total SOC storage amount in ROK was 305 Mt, and the SOC amount at Gyeongsangbuk-do were relatively higher than other regions. But the SOC storage amount(per unit) was highest in Jeju island indicating that volcanic ashes might influence on the relatively higher SOC amount. Based on these results, the SOC storage value was shown as 8.4 trillion won in ROK. Even though our SOC model was not fully validated due to lacks of measured SOC data, our approach can be useful for policy-makers in reducing soil organic carbon emission from soils against climate changes.