• Title/Summary/Keyword: Soil bacteria

Search Result 1,333, Processing Time 0.029 seconds

Effects of Pesticide (Fenitrothion) Application on Soil Organisms in Pine Stand (살충제(Fenitrothion) 살포가 소나무림의 토양생물에 미치는 영향)

  • Kwon, Tae-Sung;Kim, Kyung-Hee;Kim, Chul-Su;Lee, Jong-Hee;Yun, Chung-Weon;Hong, Yong;Kim, Jin-Tae
    • Journal of Korean Society of Forest Science
    • /
    • v.94 no.6
    • /
    • pp.420-430
    • /
    • 2005
  • As the pine wilt disease spread rapidly over Korea in recent, aerial pesticide spraying to the infected pine stands increased abruptly. The increasing aerial pesticide application for control of the disease would result in disturbance of soil ecosystem in pine stands. This study was conducted to assess the disturbance, using field experiment in pine stands of Hongleong experimental forests in Seoul with BACI experimental design with three sprayed plots and three unsprayed plots of $25m^2$. We sprayed fenitrothion of 0.0335 kg a.i./ha over each of the sprayed plots, being the same as the pesticide residues of litters after aerial spraying. The pesticide had been applied on 4 June, 11 June, and 29 June in 2002, comparable with the dates of the aerial spraying in the previous year in Busan. We monitored population of soil organisms including arthropods, fungi, bacteria, and actinomycetes at two sampling days before pesticide application, at two sampling days during the application season, and at three sampling days after last application for two months since late May in 2002. The pesticide applications did not make any significant effect on the population of arthropods, fungi, bacteria, and actinomycetes in soils and on the structure of soil organism community, showing low probability of significant effects of the aerial pesticide application on soil organisms in pine stands.

Effects of Elevated Atmospheric $CO_2$ Concentrations on Soil Microorganisms

  • Freeman Chris;Kim Seon-Young;Lee Seung-Hoon;Kang Hojeong
    • Journal of Microbiology
    • /
    • v.42 no.4
    • /
    • pp.267-277
    • /
    • 2004
  • Effects of elevated $CO_2$ on soil microorganisms are known to be mediated by various interactions with plants, for which such effects are relatively poorly documented. In this review, we summarize and syn­thesize results from studies assessing impacts of elevated $CO_2$ on soil ecosystems, focusing primarily on plants and a variety the of microbial processes. The processes considered include changes in microbial biomass of C and N, microbial number, respiration rates, organic matter decomposition, soil enzyme activities, microbial community composition, and functional groups of bacteria mediating trace gas emission such as methane and nitrous oxide. Elevated $CO_2$ in atmosphere may enhance certain micro­bial processes such as $CH_4$ emission from wetlands due to enhanced carbon supply from plants. How­ever, responses of extracellular enzyme activities and microbial community structure are still controversy, because interferences with other factors such as the types of plants, nutrient availabilitial in soil, soil types, analysis methods, and types of $CO_2$ fumigation systems are not fully understood.

A combined approach to evaluate activity and structure of soil microbial community in long-term heavy metals contaminated soils

  • Wang, Tianqi;Yuan, Zhimin;Yao, Jun
    • Environmental Engineering Research
    • /
    • v.23 no.1
    • /
    • pp.62-69
    • /
    • 2018
  • In the present study, long-term heavy metals (HMs) contaminated soil samples from a well-known Pb/Zn smelting area in the southwest of China were collected, and physicochemical and biological characteristics of these samples were evaluated. Soil samples contained different concentrations of HMs, namely Pb, Zn, Cu, and Cd. Enzyme activity analyses combined with microcalorimetric analysis were used for soil microbial activity evaluation. Results showed that two soil samples, containing almost the highest concentrations of HMs, also shared the greatest microbial activities. Based on correlation coefficient analysis, high microbial activity in heavily HMs contaminated soil might be due to the high contents of soil organic matter and available phosphorus in these samples. High-throughput sequencing technique was used for microbial community structure analysis. High abundance of genera Sphingomonas and Thiobacillus were also observed in these two heavily contaminated soils, suggesting that bacteria belonging to these two genera might be further isolated from these contaminated soils and applied for future studies of HMs remediation. Results of present study would contribute to the evaluation of microbial communities and isolation of microbial resources to remediate HMs pollution.

Seasonal Monitoring of Residual Antibiotics in Soil, Water, and Sediment adjacent to a Cattle Manure Composting Facility (우분 퇴비공장 주변 농경지 및 수계의 계절별 잔류 항생물질 모니터링)

  • Lee, Sang-Soo;Kim, Sung-Chul;Yang, Jae-E;Ok, Yong-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.734-740
    • /
    • 2010
  • Overuse of veterinary antibiotics threats public health and surrounding environment due to the occurrence of antibiotic resistant bacteria. The objective of this study was to evaluate the antibiotic's concentrations of tetracycline (TC), chlortetracycline (CTC), and oxytetracycline (OTC) in a tetracycline group (TCs), sulfamethazine (SMT), sulfamethoxazole (SMX), and sulfathiazole (STZ) in a sulfonamide group, lasalocid (LSL), monensin (MNS), and salinomycin (SLM) in a ionophore (IPs), and tylosin (TYL) in a macrolide (MLs) group from soil, water, and sediment samples adjacent to a cattle manure composting facility. For all samples of soil, water, and sediment, the highest concentrations were detected in TCs among the tested antibiotics because of its higher annual consumption in veterinary farms, Korea and its higher cohesiveness with divalent or trivalent cations in soil. Moreover, the concentrations of residual antibiotics in September were generally higher than in June because of heavier rainfall in June. We suggest that continual monitoring and developing guideline of antibiotics are needed to control residual antibiotics in the environment.

Pseudomonas putida Strain 17 Isolated from Replant Soil Promotes Tomato Growth and Inhibits Conidial Germination of Soilborne Plant Pathogens

  • Lee, Sang-Woo;Ahn, Il-Pyung;Lim, Jae-Wook;Lee, Yong-Hwan
    • The Plant Pathology Journal
    • /
    • v.21 no.3
    • /
    • pp.244-251
    • /
    • 2005
  • The induction of growth promotion on numerous crops by rhizobacteria is a well documented phenomenon. In case of tomato (Lycopersicon esculentum), fruit yield is higher in replant soil than that in fresh soil. To investigate what kind of rhizobacterium is involved, microbial community in rhizosphere and on rhizoplane of tomato plants from each soil was analyzed by dilution plating on selective media. Many Gram-negative bacteria and actinomycetes were isolated from tomato in replant soil. One Gram-negative rhizobacterium isolated was identified as Pseudomonas putida based on its biochemical characteristics, fatty acid methyl ester analysis and 16S rDNA sequence. This bacterium designated strain 17 inhibited the growth of Pseudomonas corrugata, and increased growth of tomato seedlings. In addition, its culture filtrate inhibited conidial germination of plant-pathogenic fungi such as Fusarium oxysporum f. sp. radicis-lycopersici, F. oxysporum f. sp. cucumerinum, and Nectria radicicola. Scanning electron microscopy revealed strain 17 colonized and persisted on the epidermal surfaces of tomato radicles and roots. These results suggest that P. putida strain 17 may serve as a biological control agent to suppress multiple soil-borne diseases for tomato plants. Increased microbial populations that suppress deleterious microorganisms including pathogens could be one of the major factors in increased tomato yield in replant soil.

Environmental Assessments of Leachate from Medium Density Fiberboard in a Simulated Landfill

  • Lee, Min;Prewitt, Lynn;Mun, Sung Phil
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.5
    • /
    • pp.548-557
    • /
    • 2015
  • This study investigated environmental assessments of leachate containing formaldehyde from medium density fiberboard (MDF) disposed in laboratory-scale simulated landfills. Environmental impact assessment of leachate was conducted by measuring formaldehyde, toxicity, biochemical oxygen demand (BOD), chemical oxygen demand (COD), bacterial enumeration, and pH. Amount of formaldehyde in leachate from MDF in soil decreased to the level of soil only treatment by 28 days, and toxicity decreased as the amount of formaldehyde decreased. BOD and COD levels in leachate from the treatments containing MDF exceeded permissible discharge levels of BOD or COD throughout the experimental period. The pH levels of all treatment were within permissible discharge range except on day 0. Fewer bacteria were observed in leachate from MDF in soil treatment than other treatments (MDF only, cured UF resin in soil, and soil only). Consequently, the leachate from disposal of MDF in soil detrimentally affect on environment. However, soil buffered formaldehyde leaching and pH on leachate in this study. Waste MDF may be required the pre-water soaking treatment for leaching formaldehyde to reclaim on land.

Elucidation of Corrosion and Failure of Stainless Steel Tubing buried in Soil for Potable Water (토양매설 스테인리스강 상수도 배관의 부식원인 규명)

  • Kim, Young Sik;Park, Soojin;Hwangbo, Deok;Shin, Mincheol
    • Corrosion Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.20-28
    • /
    • 2012
  • Since buried pipes contact the soil directly, corrosion by the soil could be occurred. Recently, some stainless steel pipes after 8 years burial at G area were corroded and leaked. In order to elucidate highly corroded phenomena(its rate was about 0.175 mm/y) of these pipes, the investigation for corrosion environment, soil, stray current's effect, and chemical analysis on the pipes were performed. Most of investigated sites were close to traditional water-closet and showed high moisture and thus those areas could be highly corrosive. In the investigation by two kinds of soil evaluation methods, it was revealed that the soils at G areas were highly corrosive, and moreover the contents of sulfate reducing bacteria in the soils were high. Also, open circuit potentials of many pipes showed different values and its potentials were high positive. Therefore, it was considered that corrosion of buried pipes at G area could be affected by high corrosive soil's environment and stray current corrosion.

Temporal and Spatial Change in Microbial Diversity in New-developed Wetland Soil Covered by Tamarix chinesis Community in Chinese Yellow River Delta

  • Chen Weifeng;Ann Seoung-Won;Kim Hong-Nam;Shi Yanxi;Mi Qinghua
    • Journal of Environmental Science International
    • /
    • v.14 no.4
    • /
    • pp.367-371
    • /
    • 2005
  • Soil samples were collected from new-developed wetland soil ecosystem of Tamarix chinesis plantation in Chinese Yellow River Delta in different months of 2003. Soil characteristics, temporal change and spatial distribution of microbial community composition and their relationship with nitrogen turnover and circling were investigated in order to analyze and characterize the role of microbial diversity and functioning in the specific soil ecosystem. The result showed that the total population of microbial community in the studied soil was considerably low, compared with common natural ecosystem. The amount of microorganism followed as the order: bacteria> actinomycetes>fungi. Amount of actinomycetes were higher by far than that of fungi. Microbial population remarkably varied in different months. Microbial population of three species in top horizon was corrected to that in deep horizon. Obvious rhizosphere effect was observed and microbial population was significantly higher in rhizosphere than other soils due to vegetation growth, root exudation, and cumulative dead fine roots. Our results demonstrate that microbial diversity is low, while is dominated by specific community in the wetland ecosystem of Tamarix chinesi.

Persistence of Salmonella enterica, Escherichia coli O157:H7, and Listeria monocytogenes in Soil, Liquid Manure Amended Soil, and Liquid Manure

  • Jung, Kyu-Seok;Kim, Min-Ha;Heu, Sung-Gi;Roh, Eun-Jung;Lee, Dong-Hwan;Lim, Jeong-A;Ryu, Jae-Gee;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.432-436
    • /
    • 2014
  • While searching for healthier diets, people became more attentive to agricultural organic products. However, organic foods may be more susceptible to microbiological contamination because of the use of livestock manure compost and liquid manure, potential sources of pathogenic bacteria. This study was undertaken to investigate the persistence of Salmonella enterica, Escherichia coli O157:H7, and Listeria monocytogenes in soil, liquid manure amended soil, and liquid manure. Loamy soil, liquid manure amended soil, and liquid manure were inoculated with S. enterica, E. coli O157:H7, and L. monocytogenes. Samples were incubated in consistent moisture content at $25^{\circ}C$. Samples had been periodically collected during 120 days depending on the given conditions. S. enterica and E. coli O157:H7 survived over 120 days in loamy soil and over 60 days in liquid manure amended soil, respectively. L. monocytogenes decreased faster than other pathogens in soil. S. enterica, E. coli O157:H7, and L. monocytogenes survived for up to 5 days in liquid manure. S. enterica and E. coli O157:H7 in soil decreased by 2 to $2.5log\;CFU\;g^{-1}$ for 120 days. S. enterica and E. coli O157:H7 in liquid manure amended soil decreased slowly for 21 days. However, S. enterica, E. coli O157:H7, and L. monocytogenes sharply decreased after 21 days. S. enterica, E. coli O157:H7, and L. monocytogenes in soil increased by 0.5 to $1.0log\;CFU\;g^{-1}$ for 7 days. Foodborne pathogens in soil and liquid manure amended soil gradually decreased over time.

Effect of Pesticides on Change of Soil Microflora in Flooded Paddy Soil (농약(農藥)이 담수토양중(湛水土壤)중 미생물상(微生物相) 변화(變化)에 끼치는 영향(影響))

  • Han, Seong-Soo;Kim, Seong-Jo;Baek, Seung-Hwa;Choi, Hyo-Jung
    • Korean Journal of Environmental Agriculture
    • /
    • v.9 no.2
    • /
    • pp.83-95
    • /
    • 1990
  • This study was conducted to estimate influences of pesticides such as carbofuran[2,3-dihydro-2,2-dimethylbenzofuran-7-yl methyl carbamate] as an insecticide, and pyrazolate [4-(2,4-dichlorobenzolyl)-1,3-dimethyl-5-pyrazolyl-1,3-dimethyl-5-pyrazolyl-p-toluensulfonate], pyrazolate+pretilachlor [2-chlor-2,6-diethyl-N-(n-propoxyethyl) acetanilied] as herbicides on change in numbers of soil microorganisms and pH in planted and unplanted flooded rice paddy soils. The results of weekly investigated change of pH and populations of total bacteria, gram negative bacteria, anaerobic bacteria and fungi after treatments of pesticides were as follows : The change of pH in rice-planted soil gradually decreased in a matter of weeks after treatment with pesticide and the pH increased again from the sixth week, but no change of pH could be observed in nonplanted soil. The total numer of bacteria in the treated plots were slightly less than in the control plot, and the numbers decreased with increasing application rates of pesticides. But the microbial population increased in a matter of days after treatment with pesticide. Number of the gram negative bacteria until the sixth week after treatment of pesticide were fewer than control. The number in the carbofuran-treated plot decreased after a weeks after treatment, but numbers in plots treated with pyrazolate and pyrazolate+pretilachlor increased. The number of anaerobic bacteria in the treated plots were few by comparison with the untreated control, but the number increased after a weeks after treatment with pesticides. The populations of fungi in the carbofuran-treated plot were similar by comparison with the untreated control. The populations in the plots treated with pyrazolate and pyrazolate+pretilachlor decreased in 4 to 5 weeks with increase of application rate, but afterwards increased.

  • PDF