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Effects of elevated CO, on soil microorganisms are known to be mediated by various interactions with
plants, for which such effects are relatively poorly documented. In this review, we summarize and syn-
thesize results from studies assessing impacts of elevated CO, on soil ecosystems, focusing primarily on
plants and a variety the of microbial processes. The processes considered include changes in microbial
biomass of C and N, microbial number, respiration rates, organic matter decomposition, soil enzyme
activities, microbial community composition, and functional groups of bacteria mediating trace gas
emission such as methane and nitrous oxide. Elevated CO, in atmosphere may enhance certain micro-
bial processes such as CH, emission from wetlands due to enhanced carbon supply from plants. How-
ever, responses of extracellular enzyme activities and microbial community structure are still
controversy, because interferences with other factors such as the types of plants, nutrient availabilitial
in soil, soil types, analysis methods, and types of CO, fumigation systems are not fully understood.
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Anthropogenic activities have caused the concentration of
atmospheric CO, to increase from about 280 parts per
million (ppm) at the beginning of the industrial revolution
to over 370 ppm at the present time. Current estimates
suggest that the atmospheric CO, concentration range will
lie between 450 ppm and 600 ppm by the year 2050 (Kat-
tenburg et al., 1995). More than two decades of studies of
the effects of CO, enrichment have provided a plethora of
data and an improved understanding of a wide variety of
plant responses such as net primary production, species
abundance, community composition and soil respiration
(root plus microbial respiration) in terrestrial ecosystems
(Poorter, 1993; Curtis and Wang, 1998; Ball and Drake,
1998; Edwards and Norby, 1999; Mooney et al., 1999;
Zak et al., 2000a). In addition, the chemical and physical
composition of plant material and decomposability of
plant litter have drawn much attention (Cotrufo et al.,
1994; Cotrufo and Ineson, 1995; King et al., 1997). How-
ever, belowground processes in soils have received scant
attention. In particular, the effects of elevated CO, on soil
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microbial communities and activities remain largely
unknown, severely constraining our knowledge of whole
ecosystem responses to global climatic change. Moreover,
those soil microorganisms are considered to represent
potential bio-monitors of the effects of global change or
other changes in ecosystems (Foissner, 1999, Kennedy,
1999).

As microorganisms in soils regulate the dynamics of
organic matter decomposition and plant nutrient availabil-
ity, they play a key role in the responses of ecosystems to
global climate changes. Elevated CO, would affect soil
microorganisms indirectly through increased root growth
and rhizodeposition rates {Rogers et al., 1994; Rouhier et
al., 1994; Paterson et al., 1997; Sadowsky and Schorte-
meyer 1997) because CO, concentration in soil is much
greater than the atmospheric CO, (van Veen et al., 1991).
As such, responses of plants such as root dynamics, root
exudates, and litter production and decomposition are of
great importance in understanding microbial responses.

In this review, we aim to summarize and synthesize the
results from studies assessing impacts of elevated CO, on
soil ecosystems, focusing primarily on plants and a vari-
ety of microbial processes. The processes considered
include changes in microbial biomass of C and N, soil
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enzyme activity, microbial community composition,
organic matter decomposition, and functional groups of
bacteria mediating trace gas emission in terrestrial and
wetland ecosystems. In addition, we present the recent
analysis technique for obtaining information of changes in
microorganisms and discuss possible reasons for the often
divergent responses of microbes to increasing CO,.

Plant Responses to Elevated CO,

The direct effects of increasing CO, on plants include
quantitative and qualitative changes in above- and below-
ground production (Norby, 1994). For example, C, plant
photosynthetic rates increase under a CO,-enriched atmo-
sphere (Paterson et al., 1997; Robinson and Conroy, 1999).
In addition, changes in plant chemistry have been noticed
such as C/N ratio, concentrations of starch, sugars, and
total nonstructural carbohydrates (Cotrufo et al., 1994,
Lewis et al., 1994).

Of the various responses of plants to elevated CO,, the
following observations have implications for the soil
microflora. First, numerous studies were performed focus-
ing on changes in root dynamics and nutrient availability
(Hungate et al., 1999; Day et al., 2000; Griffiths et al.,
2000; Schortemeyer et al., 2000; Johnson et al., 2001;
Wiemken et al., 2001). Most studies have found that root
growth was stimulated under elevated CO, (Jongen et al.,
1995; Fitter et al., 1997; Hebeisen et al., 1997; Paterson
et al., 1997; Rogers et al., 1998; Zak et al., 2000a) and it
was hypothesized that root production would increase as
CO, accumulates in the Earth's atmosphere (Pregitzer et
al., 2000).

Secondly, elevated CO, may affect soil organisms indi-
rectly through increased availability of labile C through
exudation (Cheng, 1999). Curtis ef al. (1994) and Diaz et
al. (1993) showed that the elevated CO, led to an increase
in carbon flux from plants to the soil. van Veen et al.
(1991) suggested quantitative and qualitative changes in
thizodeposition linked to CO, enrichment. Lekkerkerk et
al. (1990) showed that the root-derived, easily biodegrad-
able compounds of wheat roots increased under a CO,-
enriched condition. This increased input of C in the soil
may in turn stimulate mineralization (Baggs et al., 2003)
or N, fixation (Diaz et al., 1993).

Finally, elevated CO, could alter the biochemical com-
position of plant tissue above and belowground (Cotrufo
et al., 1994; Cotrufo and Ineson, 1995), which then affect
soil microorganisms (Curtis ef al., 1994; Ball, 1997). For
example, root decomposition was retarded in plants grown
under elevated CO, (Gorissen et al., 1995; Armone and
Hirschel, 1997). Similarly, it has been found that litter
decomposition of plants grown on NPK amended plots
were retarded by elevated CO,. It was thought that
changes in chemical quality of plant matter caused retar-
dation of its decomposition (Cotrufo and Ineson, 1995).
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Effects of Elevated CO, on Soil Microbes

Various responses of soil microorganisms affected by the
changes described above have been noticed. In this sec-
tion, we review the responses in terms of soil microbial
biomass, microbial numbers, activities, and several func-
tional processes.

Microbial biomass C

Numerous studies have failed to find a significant
response of microbial biomass C to elevated CO, (Jones et
al., 1998; Kampichler et al., 1998; Niklaus, 1998; Insam
et al., 1999; Hungate et al., 2000, Wiemken et al., 2001,
Larson et al., 2002; Montealegre et al., 2002; Mitchell et
al., 2003). For example, Wiemken et al. (2001) showed
that the amounts of carbon (a general marker for micro-
bial biomass) and chitin (a marker for fungal biomass) did
not respond significantly to the treatments with elevated
CO, or nitrogen fertilizer. The results of Niklaus and
Ko6mer (1996) and Rouhier et al. (1994) suggest that
responses of microbial C to elevated CO, are unlikely to
develop in nutrient deficient ecosystems. Schortemeyer et
al. (1996) reported that the size of the total heterotrophic
microbial populations, in the form of microbial C in the
rhizosphere of white clover or perennial ryegrass, did not
change under elevated CO,. In a more recent study, Schor-
temeyer et al. (2000) reported that microbial biomass did
not increase in a natural Florida scrub ecosystem after 2
years of CO, enrichment. In an artificial tropical ecosys-
tem with low nutrient availability, Insam er al. (1999)
reported that microbial biomass C, ergosterol contents,
and fungal hyphal lengths were not significantly altered
by high CO, concentration, although total bacterial counts
were significantly higher. Zak et al. (2000b) found that
microbial biomass remained unchanged in bulk soils
under elevated CO, after 2.5 growing seasons. Niklaus
(2001) analyzed ecosystem C partitioning and soil C
fluxes in grassland exposed to elevated CO, for 6 years.
They showed that C pools increased in plants (+23%) and
surface litter (+24%), but were not altered in microbes and
soil organisms.

However, several studies conflict with such observa-
tions, and have reported an increase in soil microbial bio-
mass under elevated CO, (Diaz et al., 1993; Zak et al.,
1993; Dhillion et al., 1996; Pregitzer et al., 2000, Will-
iams et al., 2000; Klamer et al., 2002). Zak et al. (1993)
observed that microbial biomass C in the rhizosphere and
bulk soil of Populus grandidentata was greater under ele-
vated than ambient CO,. In an acidic grassland herba-
ceous community an, increase of up to 80% in microbial
biomass C occurred under elevated CO, (Diaz et al.,
1993). Dhillion et al. (1996) reported that microbial bio-
mass C was significantly higher in root region of soil from
monocultures of Bromus madritensis, a comman and
sometimes dominant annual grass in Mediterranean
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model ecosystem plants under elevated CO,. In tallgrass
prairie exposed to elevated CO, for 8 years, soil microbial
biomass C tended to be greater under elevated C compared
to ambient treatment (Williams et al. 2000). Montealegre
(2002) reported that bacterial populations increased about
1.4 fold under white clover after 3 years of CO, fumigation
in pasture ecosystem. In addition, several research groups
found an increase in mycorrhizal short roots and extra-rad-
ical mycelium in response to elevated CO, (Ineichen et al.,
1995; Lewis and Strain, 1996; Runion et al., 1997; Walker
et al., 1997; Wiemken et al., 2001).

Microbial biomass N

Understanding the effects of elevated CO, on microbial
biomass N is of great importance, as such N plays a key
role in plant productivity in N limited ecosystems (Diaz et
al., 1993; Zak et al., 1993).

Elevated CO, can have a positive effect (Diaz ef al.,
1993:; Zak et al., 1993; Niklaus, 1998) or no effect (Bemn-
tson and Bazzaz, 1998; Niklaus, 1998; Zak et al., 2000b)
on soil microbial N. For example, Niklaus (1998) reported
that microbial biomass N was increased by 18%, although
microbial biomass C was not influenced by elevated CO,,.
In tallgrass prairie exposed to elevated CO, for 8 years,
soil microbial biomass N tended to be greater under ele-
vated CO, compared to ambient treatment (Williams ez al.
2000). Billings er al. (2004) examined the effects of ele-
vated CO, on soil nitrogen dynamics in the Mojave
Desert. They showed elevated CO, increased microbial
biomass N in dry soils under a perennial grass. However,
Barnard er al. (2004a) showed that microbial biomass N
was not affected by elevated CO, in four European grass-
land ecosystems after several years of treatment. Insam et
al. (1999) found that microbial biomass C was increased
by 27% under high CO, under low nutrient conditions in
an artificial tropical ecosystem, but microbial biomass N
was decreased slightly.

Microbial number

O'Neill et al. (1987) and Whipps (1985) were unable to
find differences in the total number of bacteria between
ambient and elevated CO, treatments. In studies of nitri-
fiers, the elevated CO, had no effect on population of
nitrifiers (O'Neill er al., 1987; Schortemeyer et al., 1996).
However, several authors have observed an increase in
bacterial numbers under elevated CO, (Rogers et al.,
1992, Runion et al., 1994; Insam et al., 1999; Marilley et
al., 1999). In addition, Schortemeyer et al. (1996) showed
that number of specific species increased twofold in a nat-
ural Florida scrub ecosystem after 2 years of CO, enrich-
ment while no effect was found for total population.

Microbial respiration
Many studies have found that microbial respiration was
significantly greater in elevated CO, conditions (Rogers et
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al., 1992; O'Neill, 1994; Runion et al., 1994; Dhillion et
al., 1996; Williams et al., 2000). For example, Williams et
al. (2000) observed that microbial respiration was higher
in tallgrass prairie exposed to elevated CO, for 8 years.
However, Tuchman et al. (2003) reported microbial com-
munity respiration decreased significantly by 36.8% in the
stream ecosystems with Populus tremuloides seedling
grown in elevated CO, conditions. Similar results were
also noted by Larson et al. (2002).

Nitrification and denitrification

Understanding of the effects of elevated CO, on processes
such as nitrification and denitrification is of great concern
because these processes regulate soil inorganic N concen-
trations, nitrate (NO,") leaching and production of nitrous
oxide (N,0). The effects of CO, on denitrification has
attracted particular attention because it is one of the most
important mechanisms returning N from terrestrial or
aquatic ecosystems to the atmosphere (Kaplan et al.,
1979), while also mediating release of the potent green-
house gas N,O (Smart et al., 1997; Baggs et al., 2003;
Deiglmayr et al., 2004). It has been reported that denitri-
fying activity increased significantly under CO, enrich-
ment in both controlled environments and field
conditions. For example, Inneson ef al. (1998) found
higher N,O-N, metabolite of denitrification, and produc-
tion beneath Lolium perenne growing under high N inputs
and elevated CO,. The higher denitrification rates under
elevated CO, may be due to activation of denitrifiers by
higher growth of fine roots and enhanced root exudation
(Rogers et al., 1998) and formation of anaerobic condi-
tions induced by increased soil respiration and soil water
content (Korner, 2000; Zak et al., 2000a).

However, several researchers have reported that elevated
CO, did not affect denitrifying enzymes activity (DEA)
and nitrifying enzyme activity (NEA) (Barnard et al.,
2004a), or alternatively decreased them (Matamala and
Drake, 1999; Barnard er al., 2004b). Even in a single
study, contrasting responses have been observed depend-
ing on sampling dates (Billings et al., 2003). For example,
Zak et al. (2000b) found that nitrification did not change
in bulk soils under elevated CO, after 2.5 growing sea-
sons. Barnard er al (2004a) showed that elevated CO, had
limited effects on the amount of active nitrifying and den-
itrifying enzymes presented in four European grassland
soils. In mono-specific grassland mesocosms (Holcus
lanatus and Festuca rubra) grown under elevated CO,,
NEA decreased substantially, while DEA was less respon-
sive to elevated CO, (Barnard et al., 2004b). Matamala
and Drake (1999) showed that potential denitrification
rates were reduced in soil cores taken from Scirpus olneyi
community exposed to elevated CO,.

Methanogenesis
The concentration of atmospheric methane has increased
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at ca. 1% per year. Most of the atmospheric CH, is pro-
duced by bacterial activities in extremely anaerobic eco-
systems such as natural and cultivated wetlands, sediment,
sewage, landfills, and the rumen of herbivorous animals
(IPCC, 1995).

In recent years, a number of studies have addressed the
potential changes in trace gas emissions from wetlands
exposed to elevated CO, (Table 1). For example, Drake
(1992) reported CO, enrichment stimulated methane
emissions by 80% in a salt marsh containing sedge S.
olneyi. Hutchin et al. (1995) also found a similar effect for
mire peat and vegetation exposed CO, enrichment treat-
ment. Allen et al. (1994) reported the same results in the
combined condition of increased CO, and temperature.
Wang and Adachi (1999) also provided evidence that ele-
vated atmospheric CO, concentrations could promote CH,
production from flooded soils. Megonigal and Schlesinger
(1997) who performed experiments with Orontium aquat-
icum reported CH, emissions increased by 136% under
elevated CO,.

However, Kang er al. (2001) found no significant dif-
ferences for CH, emission on northern fen peat with Jun-
cus and Festuca spp., although the mean value was higher
under elevated CO, conditions. Saarnio ef al. (1998)
reported that the average release of CH, from Sphagnum
samples exposed to the doubled concentration of CO, was
significantly lower than that at ambient CO, at 9°C and
4.5°C. Saarnio and Silvola (1999) showed the release of
CH, for each temperature condition (1.5°C-14°C), was on
average only 6-23% higher under CO,-fertilized condi-
tions. More recently, Saarnio et al. (2000) found that ele-
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vated CO, (560 ppm) increased CH, efflux by only 15-
20% in boreal mires over two years using mini-FACE
rings. The increase was clearly weaker than that in previ-
ous reports from temperate or subtropical areas where CH,
efflux increased by 80-150% during the growing season
(Dacey et al., 1994; Hutchin et al., 1995, Megonigal and
Schlesinger, 1997). The increases in CH, emission under
elevated CO, conditions can be explained by two mecha-
nisms. First, elevated CO, often results in ample supply of
carbon into soil and hence larger amounts of organic car-
bon are available for methanogens. Secondly, elevated CO,
concentration might indirectly enhance CH, emissions
from wetlands by promoting net primary production
(Guthrie, 1986; Dacey et al, 1994). Previous studies of nat-
ural and artificial wetlands have reported positive correla-
tions between methane emission rates and plant
aboveground biomass (Sass et al., 1990; Whiting et al.,
1991; Whiting and Chanton, 1992).

However, a few studies have reported the opposite trend
with CO, enrichment leading to the attenuation of meth-
ane production due to increased delivery of oxygen to the
rhizosphere. For example, Schrope et al. (1999) reported
methane emissions from rice grown in a sandy soil under
doubled CO, were 4-45 times less. The increased root
biomass due to elevated CO, may have more effectively
aerated the soil, suppressing methane production.

Uncertainties in the response of CH, emission from
wetlands exposed to elevated CO, arise due to a lack of
long-term studies. In addition, changes in litter chemistry
(Gorissen et al., 1995; Hirschel et al., 1997), nutrient defi-
ciency (van de Geijin and van Veen, 1993; Niklaus and

Table 1. Effects of elevated CO, on CH, fluxes in wetlands. Changes in CH, flux under elevated CO, are presented as (elevated-ambient)/ambient
x100. No significant differences between ambient CO, and elevated CO, treatments are indicated by the letter, NS

CO, level (ul/l)
Wetlands Species Change of CH, flux (%)  Temp. Facility Reference
Ambient /elevated CO,
NS§* 17-20°C
Sphagnum 360/ 560 (=) (p=0.008) 9°C Glasshouse
—) (p=0.007 4.5°C
O ) Saarnio et al.
o (1998)
+ =(. -
Bog (+) (o = 0.05) 17-20°C
Sedge 360/ 560 NS 9°C Glasshouse
NS 4.5°C
400-550 (night)/560 +28 . .
Sphagnum 330-390 (day) / 560 (»=0016) Summer Mini-FACE Saarnio et al. (2000)
Emergent aquatic Orontium 350/700 +(p=0.06) ND Glasshouse Megonigal and
macrophyte aquaticum +136 (p<0.01) ND Growth chamber Schlesinger (1997)
Rice on sand Oryza sativa 350/700 (=) (p=0.01) ND Greenhouse Tunnels ~ Schrope et al. (1999)
Marsh Scirpus olneyi 345 /690 + 80 (F=0.012) Summer Open-top chamber Dacey et al. (1994)
Fen Juncus Festuca spp 350/700 +74.5NS ND Open-top chamber Kang et al. (2001)
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Korer, 1996), the height of water table (Roulet et al.,
1992) or peatlands area (Gorham, 1991) may also inter-
fere with the capacity for methane emissions from wet-
land ecosystems under elevated CO, conditions.

Enzyme activities

Alterations in microbial mineralization and nutrient
cycling may control the long-term response of ecosystem
to elevated CO,. Because microorganisms are regulators
of decomposition, an understanding of microbial activity
is crucial. Elevated CO, concentration can affect extracel-
lular enzyme activities in several ways. Dhillion et al.
(1996) reported that dehydrogenase, cellulose, phos-
phatase, and xylanase were increased by elevated CO, in
the root region of soil from monocultures of Bromus
madritensis, a common and sometimes dominant annual
grass in Mediterranean model ecosystem. Of the four
enzymes examined, dehydrogenase and xylanase activi-
ties were significantly higher in soils under elevated CO,
than in ambient. Moorhead and Linkins (1997) suggested
that elevated CO, altered the soil enzyme characteristics
in a tussock tundra ecosystem. They found significantly
higher phosphatase activities at 680 mol/mol CO, on the
surfaces of plant roots, mycorrhizal surfaces, and in the
shallowest organic horizons soil.

Conflicting results have also been reported. Moorhead
and Linkins (1997) found lowering of endocellulase and
exocellulase activities in the surface organic soil horizons
of tussock tundra exposed to elevated CQ,. In alpine
grassland, cellobiohydrolase and N-acetylglucosamidase
activity was found to increase under elevated CQ, while
leucine-7-aminopeptidase activity decreased and f-D-glu-
cosidase remained unaffected (Mayr et al., 1999; Larson
et al., 2002). Kang et al. (2001) reported no significant
differences in the soil enzyme activities (acid phosphates,
B-glucosidase and N-acetylglucosaminidase) in a northern
fen bulk soil exposed to CO, enrichment. When data from
different wetlands were compared, phosphatase and N-
acetylglucosaminidase activities varied according to nutri-
ent availability in each wetland (Kanget al., 2004). It is
suspected that actively growing vegetation under elevated
CO, may compete against microbes for nutrients, resulting
in general decrease in microbial activity (Freemanet al.,
1998). Insam et al. (1999) showed that protease and xyla-
nase activities were not significantly affected, while dehy-
drogenase activity was significantly lower under elevated
CO, in an artificial tropical ecosystem.

Several studies have assessed CO, effects on enzyme
involved in nitrogen fixation. For example, Zanetti et al.
(1996) reported an increase in symbiotic nitrogen fixation
activity for 7. repens growth under enriched CO, atmo-
sphere. Dakora and Drake (2000) also observed that ele-
vated CO, stimulated greater N, fixation and nitrogenase
activity in stands of the C, sedge, Scirpus olneyi of the
Chesapeake Bay wetland. They also showed a significant
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increase in N, fixation in plant free marsh sediment
exposed to elevated CO,.

Microbial community composition

Although changes in soil microbial number, biomass,
activity, and microbial C and N in response to elevated
CO, have been demonstrated in several studies (Diaz et
al., 1993; Zak er al., 1993; Rice et al., 1994, Dhillion et
al., 1996), information on the effects on soil microbial
community structure is highly limited (Zak et al., 1996;
Griffiths et al., 1998; Insam et al., 1999; Marilley et al.
1999; Wiemken et al., 2001; Klamer et al., 2002; Deigl-
mayr et al., 2004). For microbial community structure,
phospholipid fatty acid analysis (Zak et al., 1996; Mon-
tealegre et al., 2002), and several molecular methods have
been employed (Griffiths et al., 1998; Marilley et al.,
1998; Marilley et al., 1999; Montealegre et al., 2000;
Klamer et al., 2002; Deiglmayr et al., 2004). For example,
fungal community composition has been determined by
terminal-restriction fragment length polymorphism (T-
RFLP) analysis of the internal transcribed spacer (ITS)
region (Klamer ef al., 2002). In addition, DNA hybrid-
ization, percent G+C base profiling, and PCR-based fin-
gerprinting were used in other studies (Griffiths et al.,
1998; Montealegre et al., 2000). Marilley et al. (1999)
employed DNA restriction analysis (ARDRA) and colony
hybridization, while PCR-RFLP with primers for the
narG gene was used by Deiglmayr et al. (2004).

Several studies have suggested that elevated atmo-
spheric CO, could alter the composition of soil microbial
communities due to changes in the amount and/or com-
position of plant material input into the soil (Mayr et al.,
1999; Mitchell et al., 2003). For example, the bacterial
substrate utilization assay by Dhillion et al. (1996)
reported that components or assemblages of bacterial
communities might be susceptible to shifts or change by
elevated CO, in root region soil from monocultures of
Bromus madritensis, a common and sometimes dominant
annual grass in Mediterranean model ecosystem. Jones et
al. (1998) showed that the composition of soil fungal spe-
cies changed in an artificial system under elevated CO,.
Polymerase Chain Reaction (PCR) fingerprinting of
genomic DNA by Montealegre et al. (2000) showed that
the isolates (Rhizobium strains) from plants grown under
elevated CO, were genetically different from those iso-
lates obtained from plants grown under ambient condi-
tions in a pasture ecosystem of Swiss FACE experiment.
These results indicate that elevated atmospheric CO, may
shift community composition of soil microorganisms.

In addition, elevated atmospheric CO, affects the com-
petitive ability of root nodule symbionts, most likely lead-
ing to a selection of these particular strains to nodulate
white clover. Recently, Montealegre ef al. (2002) used
PLFA analysis to examine microbial community compo-
sition in the rhizosphere soil of white clover plants grown
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under ambient or elevated CO,. They reported that the
change in soil microbial community composition occurred
after 3 years of CO, fumigation. Lekkerkerk et al. (1990)
reported that specific species responded significantly to
changes in CO, concentration.

However, some studies have shown no alteration of
microbial community composition by elevated CO, con-
centrations. Zak et al. (1996) did not find any significant
changes in microbial community composition in soil. Rin-
gelberg er al. (1997) reported that elevated CO, caused
only subtle changes in gram negative bacteria and actino-
mycetes. Griffiths er al. (1998), using broad-scale DNA
techniques, showed that the rhizosphere microbial com-
munities of ryegrass and wheat (Triticum aestivum L.)
were 86% similar under ambient and elevated CO,,. In an
artificial tropical ecosystem, Insam er al. (1999) found
that elevated CO, did not affect the shift in bacterial com-
munity employing phospholipid fatty acid analysis
(PLFA) patterns and community level physiological pro-
files (CLPP).

Factors Modifying the Responses of
Soil Microorganisms to Elevated CO,

The patterns of microbial response to elevated CO, are
influenced by several factors such as the types of plants
examined (Sadowsky and Schortemeyer, 1997), nutrient
status, soil type, the analysis method (Zak er al., 1996;
Griffiths et al., 1998), experimental system (O'Neill et al.,
1987), and diversity of microbes in the ecosystem (Mon-
tealegre et al., 2000).

Types of vegetation and microbial responses to elevated
co,

Montealegre et al. (2002) found that the microbial popu-
lation associated with white clover (Trifolium repens L.)
under elevated CO, increased, while no effect on total or
metabolically active bacteria in bulk soil of perennial
ryegrass (Lolium perenne L.) was noted. Schortemeyer et
al. (1996) also found a positive effect of the elevated CO,
on the bacterial numbers in the rhizosphere of ryegrass,
but a negative effect in the rhizosphere of T. repens. How-
ever, Deiglmayr et al. (2004) found that plant species had
no apparent effect on microbial responses.

Nutrient status

According to Cardon (1996), the influence of elevated CO,
is linked to the nutrient status of the soil. Under nutrient
(mostly N) limited conditions, effects of elevated CO, on
plants were generally found to be much smaller (Kérner et
al., 1997) and it was suggested that poor N supply limited
the microbial utilization of C compounds (van Veen et al.,
1991). For example, Arnone and Koémer (1995) found that
under severe N limitation, the C contents of any ecosystem
compartment (above- and below-ground biomass, soil
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organic matter) remained unchanged. Rice et al. (1994)
and Niklaus and K6mer (1996) did not find CO, fertiliza-
tion effects on the soil microbiota without N fertilization,
while they found an increased respiration under elevated
CO, with N supply. Likewise, an increase in microbial
activity was found under N limited conditions in a study
on prairie soils, but the response was larger when fertilizer
was added (Rice er al.,, 1995). In addition, it has been
hypothesized that an optimal soil nitrogen concentration
exists for the functioning of the symbiosis that depends on
the combination of the tree and fungal species (Wallenda
and Kottke, 1998). Accordingly, nutrient status, particu-
larly N supply, is thought to be an important factor con-
trolling the magnitude of microbial response to elevated
CO.,.

Iri a study by Insam et al. (1999), the small effects on
the soil microbiota were probably due to low nutrient sup-
ply and low organic matter content of the soil. However,
Deiglmayr et al. (2004) reported that fertilizer treatment
had no apparent effect.

Microhabitats in soil

The extent of changes in microbial processes often
depends on the location of soil microorganisms. In par-
ticular, the distance between microbes and plant root sur-
face is of great importance (Montealegre et al., 2002). For
example, elevated CO, affected bacteria colonized in the
rhizosphere and the rhizoplane-endorhizosphere most
substantially (Marilley et al., 1999; Schortemeyer er al.,
2000; Wiemken et al., 2001; Montealegre et al., 2002).
Likewise, Wiemken et al. (2001) found that the microbial
communities in bulk soil or rthizosphere were clearly less
responsive to elevated CO,.

Other factors

In a tallgrass prairie, Rice et al. (1995) found a positive
effect of elevated CO, on the microbial biomass under
dry, but not under humid conditions, and they attributed
the response to better moisture retention due to more effi-
cient CO, uptake under elevated CO,. Deiglmayr er al.
(2004) reported that the structure of the nitrate-reducing
community was primarily affected by season and pH of
the sampling site.

Conclusions and Future Directions

The overall mechanisms and responses of soil microorgan-
isms to elevated CO, are summarized in Fig. 1. Soil micro-
organisms are known to be affected by elevated CO, through
various interactions with plants, including increased root
exudation, altered leaf chemistry, and competition for
resources. As microbial responses to elevated CO, are indi-
rectly mediated by plant responses, results of studies consid-
ering CO, effects on microorganisms are often relatively
unclear. Higher carbon supply from plants caused by elevated
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| increased photosynthesisJ
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w . ™ Changes in litter chemistry
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Competition for putrients and water Increased rhizodeposition

Effects on soil microbe
1) Soil microbial community
2) Microbial biomass C. N
3) Microbial activities (respiration, enzymes}
\ 4} Functional processes {methanogenesis, nitrification, denitrification)

Fig. 1. Summary of mechanisms by which soil microorganisms can be
affected by elevated CO, in the atmosphere.

CO, may enhance certain microbial processes such as CH,
emission from wetlands. However, other microbial properties
such as extracellular enzyme activities and microbial com-
munity structure are connected partially with other factors
(e.g., nutrient availability, vegetation type, or microhabitat),
and hence unequivocal conclusions about the effects of ele-
vated CO, on soil microorganisms are still lacking.

An improved understanding of microbial responses to
elevated CO, could be obtained in further studies. For
example, recent techniques such as micro-arrays and other
molecular tools could be applied more effectively to this
field. Compared to other fields of microbiology, informa-
tion gathering using this approach is relatively lacking.
Secondly, better experimental design and sampling tech-
niques appear warranted if we are to account for interfer-
ences from other factors as well as artifacts from
heterogeneity of soil media. Thirdly, there are likely to be
many advantages to be gained from the simultaneous
application of multiple techniques to a single or small set
of experiments, so that various aspects of microbial struc-
ture and functions (and their interactions) can be consid-
ered. Finally, appropriate statistical techniques and
modeling approaches are required to extrapolate microbial
data to ecosystem or global scales.
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