• Title/Summary/Keyword: Soil bacteria

Search Result 1,330, Processing Time 0.027 seconds

Principle and Application of Composting for Soils Contaminated with Hazardous Organic Pollutants (오염토양 정화를 위한 콤포스팅 기술의 원리와 적용에 관한 고찰)

  • Park, Joon-Seok;Lee, Noh-Sup;In, Byung-Hoon;Namkoong, Wan;Hwang, Eui-Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.3
    • /
    • pp.77-87
    • /
    • 2001
  • Composting is a cost-effective and environmentally-sound technology to treat soils contaminated with hazardous organic pollutants. Pollutants to be treated are as follows: explosives, phenolic compounds, PAHs, petroleum hydrocarbons, pesticides, and etc. Composting systems are windrow, static pile, and in-vessel. Design and operational parameters of composting are aeration modes, temperature, moisture content, nutrient supplement, amendment added, and etc. Appropriate oxygen concentration of composting for contaminated soils are 5~15%, while some compounds are degraded well at the low $O_2$ concentration of 2~5%. The most diverse microorganisms live in the temperature of $25{\sim}40^{\circ}$. 50~90% of the soil field capacity is the moisture content not to make a problem in composting. Assuming a bacterial chemical equation is $C_{60}H_{87}O_{23}N_{12}P$, theoretical C : N : P from bacterial chemical portion is approximately 20 : 5 : 1. It should be noted that the ratio does not apply to the total organic carbon measured in a waste because not all carbon metabolized by bacteria is synthesized to new cellular material. Initial C/N ratio of 25~40 is optimum. It is more economical to recycle soils or composts than to add commercial microbes.

  • PDF

Ethylene Biosynthesis of an Alkalophilic Bacillus sp. Alk-7 (알카리성 Bacillus sp. Alk-7에 의한 Ethylene 생합성과 그 경로)

  • Bae, Moo;Kim, Mi-Ye
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.3
    • /
    • pp.195-199
    • /
    • 1998
  • AH alkalophilic Bacillus SP. AIk-7, isolated from soil, produced ethylene. The characteristics of this microorganism is the ability to grow well under the alkaline condition, at pH 10.3. This strain is similar to Bacillus alkalophilus in terms of morphological, physiological and biological characteristics. In observation of relationship of cell growth and ethylene production according to incubation times, the ethylene synthesis mostly occur from the late exponential phase to the death phase of growth. The purpose of this paper is to study the effects of various substrates on the biosynthesis of ethylene in the intact cell and the cell-free system by the Bacillus sp. AIk-7. In both intact cell and cell-free extract, optimum conditions for ethylene production was achieved at pH 10.3 and 3$0^{\circ}C$. Ethylene was effectively produced from L-Met and 1-aminocyclopropane-1-carboxylic acid (ACC). In this case, ACC as the substrate on ethylene production were two fold higher than L-met at each concentration of substrates. On the other hand, the cell-free ethylene-forming system was used as a tool for the elucidation of the biochemical reaction involved in the formation of ethylene by Bacillus sp. AIk-7. Ethylene production in the cell-free system required the presence of manganese and cobalt ion to be stimulated a little. The result obtained in this work suggests that L-met and ACC may be a precursor more directly related to bacterial ethylene production than any other substrates tested.

  • PDF

Prediction of Pathway and Toxicity on Dechlorination of PCDDs by Linear Free Energy Relationship (다이옥신의 환원적 탈염화 분해 경로와 독성 변화예측을 위한 LFER 모델)

  • Kim, Ji-Hun;Chang, Yoon-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.2
    • /
    • pp.125-131
    • /
    • 2009
  • Reductive dechlorination of polychlorinated dibenzo-p-dioxins (PCDDs) and its toxicity change were predicted by the linear free energy relationship (LFER) model to assess the zero-valent iron (ZVI) and anaerobic dechlorinating bacteria (ADB) as electron donors in PCDDs dechlorination. Reductive dechlorination of PCDDs involves 256 reactions linking 76 congeners with highly variable toxicities, so is challenging to assess the overall effect of this process on the environmental impact of PCDD contamination. The Gibbs free energies of PCDDs in aqueous solution were updated to density functional theory (DFT) calculation level from thermodynamic results of literatures. All of dechlorination kinetics of PCDDs was evaluated from the linear correlation between the experimental dechlorination kinetics of PCDDs and the calculated thermodynamics of PCDDs. As a result, it was predicted that over 100 years would be taken for the complete dechlorination of octachlorinated dibenzo-p-dioxin (OCDD) to non-chlorinated compound (dibenzo-p-dioxin, DD), and the toxic equivalent quantity (TEQ) of PCDDs could increase to 10 times larger from initial TEQ with the dechlorination process. The results imply that the single reductive dechlorination using ZVI or ADB is not suitable for the treatment strategy of PCDDs contaminated soil, sediment and fly ash. This LFER approach is applicable for the prediction of dechlorination process for organohalogen compounds and for the assessment of electron donating system for treatment strategies.

Immobilization of Bacillus sp. Strains, Catalase Producing Bacteria and Their Hydrogen Peroxide Removal Characteristics (카탈라제를 생산하는 고초균 (Bacillus sp.)의 고정화 및 과산화수소 분해 특성)

  • Han, Kyung-Ah;Jang, Yun-Hee;Rhee, Jong-Il
    • KSBB Journal
    • /
    • v.25 no.6
    • /
    • pp.520-526
    • /
    • 2010
  • In this work we have investigated the production of catalase from Bacillus sp. strains, which were screened and identified from soil. These strains were cultivated in shaking flasks with tryptic soy broth (TSB) at $30^{\circ}C$ and 200 rpm. Effects of the temperature and pH on the stability of the native catalase and whole cell viability were studied in the temperature range of $25-60^{\circ}C$ and the pH range of 7-13. Korean natural zeolite was added to culture medium and mixed with microorganisms for 24 hours. The native catalase maintained its activity over $50^{\circ}C$. The enzyme acitiviy of the catalase from Bacillus flexus BKBChE-3 was highest among the Bacillus sp. strains studied. Bacillus flexus BKBChE-3 and immobilized Bacillus cells have survived under extreme conditions of over $50^{\circ}C$ and pH 12. 60 mL of 10.5 mM $H_2O_2$ solution were entirely removed within 1 hour with catalase produced from Bacillus sp. on the flask. When Bacillus cells were immobilized on Korean natural zeolite, colony forming unit of Bacillus flexus BKBChE-3 was increased and high efficiency of hydrogen peroxide removal was observed.

Studies on the Production of 5'-Nucleotides by Streptomyces spp. -Part 1. Isolation of 5'-phosphodiesterase Producing Microorganisms- (방사균(放射菌)에 의한 5'-Nucleotide류(類)의 생산(生産)에 관한 연구(硏究) -제 1 보(第 1 報) 5'-Phosphodiesterase생산균(生産菌)의 분리(分離)-)

  • Kim, Hong-Jip;Bae, Chong-Chan;Hwang, Kyu-Ln;Kong, Un-Young
    • Applied Biological Chemistry
    • /
    • v.22 no.4
    • /
    • pp.210-216
    • /
    • 1979
  • RNA degrading bacteria were isolated from soil of Korea. One strain (no. JSC-114), having strong 5'-phosphodiesterase activity, was identified as belonging to the genus Streptomyces on the basis of taxonomic characteristics. The optimum conditions of 5'-phophosdiesterase production were found at $30^{\circ}C$ for 4 day in a medium containing 4.5% of soluble starch, 0.15% of peptone, 0.6% of yeast extract, 0.1% of $MgSO_4{\cdot}7H_2O$, 0.01% of $CaCl_2{\cdot}2H_2O$, 0.25% of $KNO_3$, and 0.5% of $KH_2PO_4$(pH 7.0). The maximum production rate of 5'-nucleotides from yeast RNA was 95% at $40-45^{\circ}C$ for 4hrs, and the products were identified as 5'-IMP, 5'-GMP, 5'-CMP and 5'-UMP(5.5 : 5.0 : 4.9 : 5.0).

  • PDF

Enhanced Nitrate Uptake by Enterobacter amnigenus GG0461 at Alkaline pH (염기성 pH에서 Enterobacter amnigenus GG0461의 질산이온 흡수증가)

  • Choi, Tae-Keun;Kim, Sung-Tae;Han, Min-Woo;Kim, Young-Kee
    • Applied Biological Chemistry
    • /
    • v.51 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • Salt accumulation in soils of greenhouse due to the massive application of nitrogen fertilizers causes salt stress on the various crops, a serious problem in domestic agriculture. Since the majority of the salinity is nitrate, the excess nitrate should be removed; therefore, a bacterial strain having high capacity of nitrate uptake and identified as Enterobacter amnigenus GG0461 was isolated from the soils of greenhouse. Optimum conditions for the bacterial growth and nitrate uptake were investigated. GG0461 was able to grow without nitrate; however, nitrate facilitated the growth. The rate of nitrate uptake increased at alkaline pH and both growth and nitrate uptake were maximal at pH 8-9. When the initial pH of culture medium was increased to pH 8 or 9, it was decreased to neutral upon bacterial growth and nitrate uptake. These results imply that the major factor mediating bacterial nitrate uptake is a nitrate/proton antiporter. The fact was supported by the effect of nitrate addition in the absence of nitrate, since the addition of nitrate greatly increased the nitrate uptake and rapidly decreased pH of media.

Changes in Physico-chemical and Microbiological Parameters during Active Composting of Cattle Manure (우분 퇴비화의 주발효과정 중 이화학적 및 미생물학적 파라미터의 변화)

  • Kim, Yoon Seok;Kang, Myoung Kyu;Bae, Kyung Sook;Lee, Kyu Seung;Rhee, Young Ha
    • Korean Journal of Microbiology
    • /
    • v.33 no.4
    • /
    • pp.267-273
    • /
    • 1997
  • Various physico-chemical and microbiological parameters of a composting system were compared with respect to their potential use for the monitoring and evaluation of composting processes for cattle manure. The temperature changed within a range of $30-65^{\circ}C$ during the whole composting process, and the period of active composting (>$40^{\circ}C$) persisted for 16 days. The concentrations of total carbon, total nitrogen, and organic matter decreased by 15% during active composting, but significant changes in C/N ratio were not observed. The decrease of temperature in the latter period of active composting caused a decrease of $NH_4^+-N$ and an increase of $NO_3^--N$ in the composting pile. When temperature exceeded $50^{\circ}C$, the population of thermophiles was higher than that of mesophiles by more than 1 or 2 orders of magnitude. Correlation analyses showed that amylase activity correlated positively with the population of mesophiles and reducing sugar content, but negatively with the population of thermophiles. Amylase activity was higher at the beginning of active composting, whereas cellulase, xylanase and ligninase activities which showed close relationship with each other, increased continually during active cornposting, suggesting the distinction of temporal niches between amylose-degrading and lignocellulose-degrading bacteria in the same habitat.

  • PDF

Biological Control of Crown Gall

  • Kerr, Allen;Biggs, John;Ophel, Kathy
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 1994.06a
    • /
    • pp.11-26
    • /
    • 1994
  • Crown gall of stonefruit and nut trees is one of the very few plant diseases subject to efficient biological control. The disease is caused by the soil-inhabiting bacteria Agrobacterium tumefaciens and Agrobacterium rhizogenes and the original control organism was a non-pathogenic isolate of A. rhizogenes strain K84. Control is achieved by dipping planting material in a cell suspension of strain K84 which specifically inhibits pathogenic strains containing a nopaline Ti plasmid. Because the agrocin 84-encoding plasmid (pAgK84) is conjugative, it can be transmitted from the control strain to pathogenic strains which, as a result, become immune to agrocin 84 and cannot be controlled. To prevent this happening, the transfer genes on pAgK84 were located and then largely eliminated by recombinant DNA technology. The resulting construct, strain K1026, is transfer deficient but controls crown gall just as effectively as does strain K84. Field data from Spain confirm that pAgK84 can transfer to pathogenic recipients from strain K84 but not from strain K1026. The latter has been registered in Australia as a pesticide and is the first genetically engineered organism in the world to be released fro commercial use. It is recommended as a replacement for strain K84 to prevent a breakdown in the effectiveness of biological control of crown gall. Several reports indicate that both strains K84 and K1026 sometimes control crown gall pathogens that are resistant to agrocin 84. A possible reason for this is that both strains produce a second antibiotic called 434 which inhibits growth of nearly all isolates of A. rhizogenes, both pathogens and non-pathogens. Crown gall of grapevine is caused by another species, Agrobacterium vitis. It is resistant to agrocin 84 and cannot be controlled by strains K84 or K1026. It is different from other crown gall pathogens in several characteristics, including the fact that, although a rhizosphere coloniser, its also lives systemically in the vascular tissue of grapevine. Pathogen free propagating material can be obtained from tissue culture or, less surely, by heat therapy of dormant cuttings. A number of laboratories are searching for a biocontrol strain that will prevent, or at least delay, reinfection. A non-pathogenic A. vitis strain F/25 from South Africa looks very promising in this regard.

  • PDF

Isolation and Characteristics of Bacteria Showing Biocontrol and Biofertilizing Activities (생물방제 및 생물비료 활성을 가지는 세균의 분리 및 특성)

  • Jung, Ho-Il;Kim, Keun-Ki;Park, Hyean-Cheal;Lee, Sang-Mong;Kim, Yong-Gyun;Kim, Hong-Sung;Lee, Cnung-Yeol;Son, Hong-Joo
    • Journal of Life Science
    • /
    • v.17 no.12
    • /
    • pp.1682-1688
    • /
    • 2007
  • To develop multifunctional microbial inoculant, microorganisms with antagonistic activity and biofertilizing activity were screened. Pantoea agglomerans and Bacillus megaterium from our laboratory culture collection, and strain MF12 from soil near poultry farm in Miryang were selected. On the basis of morphological, physiological studies and 16S rDNA sequence analysis, isolate MF12 was identified as the Bacillus pumilis. Three strains were studied for insoluble phosphate solubilization, indole-3-acetic acid (IAA) and siderophore production, ammonification ability, hydrolytic enzyme production and antifungal activity against phytopathogenic fungi. P. agglomerans did not produce any visible clear zone on agar plate containing 0.5% $Ca_3(PO_4){_2}$ as a sole phosphorus source. However, this strain could solubilize insoluble phosphate in liquid medium. All strains produced IAA ranged from $3{\sim}639{\mu}g/ml$ depending on culture time and had ammonification ability. Among three strains, only P. agglomerans produced siderophore. P. agglomerans produced pectinase and lipase, B. megaterium produced amylase, protease and lipase while B. pumilis produced protease and lipase. P. agglomerans showed antifungal activities against phytopathogenic fungi, Fusarium oxysporum and Colletotrichum gloeosporioides. B. pumilis showed antifungal activities against Botrytis cinerea, Sclerotinia sclerotiorum and Phythium ultimum.

Characterization of Potential Plant Growth-promoting Rhizobacteria as Biological Agents with Antifungal Activity, Plant Growth-promoting Activity, and Mineral Solubilizing Activity (항진균 활성, 식물 생장촉진 활성, 미네랄 가용화능을 가진 생물학적 제제로서 잠재적 식물 생장촉진 근권세균의 특성조사)

  • Lee, Song Min;Kim, Ji-Youn;Kim, Hee Sook;Oh, Ka-Yoon;Lee, Kwang Hui;Lee, Sang-Hyeon;Jang, Jeong Su
    • Journal of Life Science
    • /
    • v.31 no.7
    • /
    • pp.641-653
    • /
    • 2021
  • The purpose of this study was to confirm the antifungal activity, plant growth-promoting activity, and mineral solubilizing activity of 18 types of bacteria isolated purely from rhizosphere soil. The potential of isolates of the genus Bacillus and Pseudomonas as biocontrol agents was confirmed through the antifungal activity of these isolates. This activity has been determined to be due to various hydrolytic enzymes on the cell wall of plant pathogenic fungi and the production of siderophores in isolates. In addition, most of the isolates have been found to have aminocyclopropane-1-carboxylate deaminase production activity, indole-3-acetic acid production activity, and nitrogen fixation activity. These characteristics are believed to have a positive effect on root development, growth, and the productivity of crops via a reduction in the concentration of ethylene under conditions of environmental stress, to which plants are commonly exposed. In addition, on testing for the solubilizing activity of the isolates for phosphoric acid, silicon, calcium carbonate, and zinc, some isolates were found to have mineral solubilizing activities. Inoculation of these isolates during plant growth is expected to assist plant growth by converting nutrients necessary for growth into usable forms that can be absorbed by plants. The 18 isolated strains can be used as biocontrol agents due to their antifungal activity, plant growthpromoting activity, and mineral solubilizing activity.