• Title/Summary/Keyword: Soil and Water Assessment Tool

Search Result 315, Processing Time 0.034 seconds

Assessment of Climate Change Impact on Highland Agricultural Watershed Hydrologic Cycle and Water Quality under RCP Scenarios using SWAT (SWAT모형을 이용한 RCP 기후변화 시나리오에 따른 고랭지농업유역의 수문 및 수질 평가)

  • Jang, Sun Sook;Kim, Seong Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.3
    • /
    • pp.41-50
    • /
    • 2017
  • The purpose of this study were to evaluate the effect of best management practices (BMPs) of Haean highland agricultural catchment ($62.8km^2$) under future climate change using SWAT (Soil and Water Assessment Tool). Before future evaluation, the SWAT was setup using 3 years (2009~2011) of observed daily streamflow, suspended solid (SS), total nitrogen (T-N), and total phosphorus (T-P) data at three locations of the catchment. The SWAT was calibrated with average 0.74 Nash and Sutcliffe model efficiency for streamflow, and 0.78, 0.63, and 0.79 determination coefficient ($R^2$) for SS, T-N, and T-P respectively. Under the HadGEM-RA RCP (Representative Concentration Pathway) 4.5 and 8.5 scenarios, the future precipitation and maximum temperature showed maximum increases of 8.3 % and $4.2^{\circ}C$ respectively based on the baseline (1981~2005). The future 2040s and 2080s hydrological components of evapotranspiration, soil moisture, and streamflow showed changes of +3.2~+17.2 %, -0.1~-0.7 %, and -9.1~+8.1 % respectively. The future stream water quality of suspended solid (SS), total nitrogen (T-N), and total phosphorus (T-P) showed changes of -5.8~+29.0 %, -4.5~+2.3 %, and +3.7~+17.4 % respectively. The future SS showed wide range according to streamflow from minus to plus range. We can infer that this was from the increase of long-term rainfall variability in 2040s less rainfalls and 2080s much rainfalls. However, the results showed that the T-P was the future target to manage stream water quality even in 2040s period.

Estimation of CN-based Infiltration and Baseflow for Effective Watershed Management (효과적인 유역관리를 위한 CN기법 기반의 침투량 산정 및 기저유출량 분석)

  • Kim, Heewon;Sin, Yeonju;Choi, Jungheon;Kang, Hyunwoo;Ryu, Jichul;Lim, Kyoungjae
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.4
    • /
    • pp.405-412
    • /
    • 2011
  • Increased Non-permeable areas which have resulted from civilization reduce the volume of groundwater infiltration that is one of the important factors causing water shortage during a dry season. Thus, seeking the efficient method to analyze the volume of groundwater in accurate should be needed to solve water shortage problems. In this study, two different watersheds were selected and precipitation, soil group, and land use were surveyed in a particular year in order to figure out the accuracy of estimated infiltration recharge ratio compared to Web-based Hydrograph Analysis Tool (WHAT). The volume of groundwater was estimated considering Antecedent soil Moisture Condition (AMC) and Curve Number (CN) using Long Term Hydrologic Impact Assessment (L-THIA) model. The results of this study showed that in the case of Kyoung-an watershed, the volume of both infiltration and baseflow seperated from WHAT was 46.99% in 2006 and 33.68% in 2007 each and in Do-am watershed the volume of both infiltration and baseflow was 33.48% in 2004 and 23.65% in 2005 respectively. L-THIA requires only simple data (i.e., land uses, soils, and precipitation) to simulate the accurate volume of groundwater. Therefore, with convenient way of L-THIA, researchers can manage watershed more effectively than doing it with other models. L-THIA has limitations that it neglects the contributions of snowfall to precipitation. So, to estimate more accurate assessment of the long term hydrological impacts including groundwater with L-THIA, further researches about snowfall data in winter should be considered.

Effect of Watershed Subdivision on Hydrologic and Environmental Factor Predictions in SWAT Model (SWAT 모형에 의한 수문 및 환경인자 예측을 위한 유역분할의 영향)

  • Jang, Kyung-Soo;Jang, Kwang-Jin;Yeo, Woon-Ki;Ko, Jin-Seok;Jee, Hong-Kee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1578-1582
    • /
    • 2007
  • SWAT(Soil and Water Assessment Tool) 모형을 이용한 수문 환경인자 예측에 있어서 적절한 소유역의 분할은 그 결과에 매우 중요한 영향을 미친다. 소유역의 크기, 규모 및 분할개수에 따라 유역모델링 과정과 그 결과에 큰 영향을 미치기 때문이다. 따라서 본 연구에서는 SWAT 모형의 거동 특성과 유역수준별 소유역 분할에 대한 기준을 제시할 목적으로 낙동강의 제1지류이자 국제수문개발계획(International Hydrologic Project, IHP)의 국내 대표유역 중 하나인 위천 유역을 대상으로 하여 각 유역별 소유역 분할 수에 따른 연평균 유출, 유사량 및 환경인자의 변화를 검토하였다. 여기서, SWAT 모형의 적용을 위하여 DEM, 토지이용도/토지피복도, 토양도 등의 GIS 자료와 강우량 및 기상자료를 이용하였다. 이로부터 본 논문은 위천 유역에 대한 적정 소유역 분할 기준을 제시하였으며, 이를 바탕으로 모형 구축시간 및 모의시간 단축할 수 있어 모형의 적용 효율을 높일 수 있을 것으로 판단된다.

  • PDF

Analysis of Evpotranspiration and Runoff Componet by Using SWAT Model -for Seolma-cheon Watershed- (SWAT 모형을 이용한 증발산 및 유출 성분의 해석 -설마천 유역을 대상으로-)

  • Joh, Hyung-Kyung;Lee, Ji-Wan;Shin, Hyung-Jin;Jung, In-Kyun;Kim, Seong-Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1515-1519
    • /
    • 2010
  • 본 연구는 설마천 유역($8.54km^2$)을 대상으로 준분포형 장기강우유출모형인 SWAT(Soil and Water Assessment Tool) 모형을 이용하여 유역의 수문학적 거동 특성을 규명하고자 하였다. SWAT모형의 적용을 위하여 지형자료(DEM, 토지이용도, 토양도)와 수문 및 기상관측자료를 이용하였다. 유출량, 증발산량에 대하여 각각 보정 및 검증을 통해 모형의 적용성 평가를 실시하였으며 그 결과 유출 및 증발산의 경향은 실측치의 경향과 비교적 비슷하였으나, 통계적인 상관성은 불안정한 경향을 보였으며, 특히 가을에 발생한 증발산량을 모형이 구현해 내지 못하는 결과를 보였다.

  • PDF

Assessment of the Impacts of the Impervious Surface Change in the Farm Region on Watershed Hydrology (농경지 불투수면 변화에 따른 유역 수문 영향 분석)

  • Kim, Hak-Kwan;Lee, Eun-Jeong;Park, Seung-Woo;Kang, Moon-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.6
    • /
    • pp.17-23
    • /
    • 2009
  • The Soil and Water Assessment Tool (SWAT) model was used in this study to evaluate the hydrologic impacts by the impervious surface change in the farm region. The model was calibrated and validated by using four years (1999-2002) of measured data for the Gyeongancheon watershed in Korea. The simulation results agreed well with observed values during the calibration and validation periods. Land use scenarios including various changes of the plastic film house area in the farm region were applied to assess their effects on watershed hydrology. The results indicated that the surface direct (5.6%~14.0%) and total runoff (0.8%~1.5%) increased, but the groundwater discharge (10.7%~27.7%) and evapotranspiration (1.5%~3.3%) decreased as the plastic film house area (5.7%~12.4%) increased.

Assessment of sediment and total phosphorous loads using SWAT in Oenam watershed, Hwasun, Jeollanam-do (SWAT 모델을 이용한 외남천 유역의 토사 및 총인 유출량 분석)

  • Lee, Taesoo
    • Journal of the Korean association of regional geographers
    • /
    • v.22 no.1
    • /
    • pp.240-250
    • /
    • 2016
  • Monitoring for water quantity and quality was conducted in this study for 2 years (2012~2013) in Oenam Stream which is a tributary of Seomjin River and upstream of Juam Lake. Suspended solid and total phosphorous(TP) were monitored and analyzed, then water quantity and quality as well as their relation with landuses were identified based on the previous study. Flow showed the similar pattern with precipitation but some discrepancies existed due to the distance between weather station(Gwangju) and study area. Watershed was modeled based on observed data using SWAT(Soil and Water Assessment Tool). Model calibration was conducted using data obtained in 2012 and validation was conducted using data in 2013. The coefficient of determination ($R^2$) between observed and modeled showed 0.6644 and 0.5176 for flow and TP, respectively for model calibration period. For validation period, $R^2$ was 0.7529 for flow and 0.7057 for TP, which were higher than calibration period. Hot spots were determined for watershed management by analyzing the amount of sediment and TP outcome from each sub-watershed. TP loading by landuse determined that cropland, of which the area takes only 5% from entire watershed, generated 53.6% of TP and residential and cowshed was responsible for 23.5% of TP loading.

  • PDF

Applicability Analysis of SWAT Model for a Small Basin (소유역에 대한 모형의 SWAT 적용성 분석)

  • Park, Sung-Chun;Cho, Dong-Jin;Roh, Kyong-Bum;Jin, Young-Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.2042-2045
    • /
    • 2008
  • 수자원을 효율적으로 이용하고 관리하기 위해서는 정확한 유출량을 파악하는 것이 매우 중요하다. 그러나 소하천에서의 수문자료의 측정은 거의 이루어지지 않고 있는 실정이며, 따라서 대부분의 소하천 유역을 미계측 유역으로 분류할 수 있다. 본 연구에서는 수문관측 자료가 없는 소하천에서의 Soil and Water Assessment Tool(SWAT)의 적용가능성을 판단하였다. 남원에 위치하고 있는 지방 2급 하천인 광치천을 대상지점으로 SWAT 모형을 이용하여 일유출량을 모의하였다. 모의 값의 정확성을 판단하기 위하여 2004년의 저 평수기 측정 자료와 SWAT 모형으로부터의 모의 값을 비교 분석하였다. 또한 SWAT 모형에 의한 결과와 면적비유량법에 의한 결과를 비교하였다. 모의 결과 SWAT 모형에 의한 결과는 RMSE가 0.189이고, 면적비유량법에 의한 결과는 0.207로 나타났으며, 따라서 SWAT 모형에 의한 유출량 모의가 소하천에서도 적용 가능함을 판단할 수 있었다.

  • PDF

Hydrologic component analysis using global meteorological data in Awash basin, Ethiopia (글로벌 기상자료를 이용한 Awash 유역의 수문성분해석)

  • Tolera, Mesfin;Chung, Il-Moon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.334-334
    • /
    • 2018
  • 에티오피아 Awash 하천유역의 수자원은 경제적, 사회적, 생태적으로 매우 중요하다. 하지만 이 지역에 신뢰성 높은 기상자료의 확보가 매우 어렵기 때문에 Climate Forecast System Reanalysis (CFSR)의 글로벌 기상자료를 이용한 수문성분해석결과와 기존의 제한된 기상자료를 활용한 결과를 비교하여 향후 두 자료를 적절히 활용하는 방안을 모색하였다. 수문모형은 글로벌 적용이 가능한 SWAT(Soil and Water Assessment Tool)을 활용하였고, 상이한 자료를 이용하여 구한 모형의 성능은 두 지점의 관측 유출량과의 비교를 통해 검토하였다. 매개변수의 보정은 Sequential uncertainty fitting (SUFI-2)방법을 이용하였다. Keleta 및 Melka Kunture 소유역에서의 유출량을 비교한 결과 기존의 가용 기상자료를 활용하여 구한 결과에 비해 CFSR 글로벌 기상자료를 이용한 결과가 보다 양호한 것으로 나타났다. 특히 유역면적이 Keleta소유역에 비해 6배가 큰 Melka Kunture 유역에서 CFSR 기상자료를 이용하여 산정한 유출량이 더욱 정확한 것으로 나타나 유역면적이 큰 곳에서 글로벌 자료의 활용성은 더욱 높은 것으로 확인되었다. 글로벌 기상자료의 활용은 아프리카의 대부분 지역과 같이 확보된 기상자료가 부족한 곳에서 유용하게 활용될 수 있을 것으로 전망되었다.

  • PDF

Evaluation of Water Quality Impacts of Forest Fragmentation at Doam-Dam Watershed using GIS-based Modeling System (GIS 기반의 모형을 이용한 도암댐 유역의 산림 파편화에 따른 수(水)환경 영향 평가)

  • Heo, Sung-Gu;Kim, Ki-Sung;Ahn, Jae-Hun;Yoon, Jong-Suk;Lim, Kyoungjae;Choi, Joongdae;Shin, Yong-Chul;Lyou, Chang-Won
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.4
    • /
    • pp.81-94
    • /
    • 2006
  • The water quality impacts of forest fragmentation at the Doam-dam watershed were evaluated in this study. For this ends, the watershed scale model, Soil and Water Assessment Tool (SWAT) model was utilized. To exclude the effects of different magnitude and patterns in weather, the same weather data of 1985 was used because of significant differences in precipitation in year 1985 and 2000. The water quality impacts of forest fragmentation were analyzed temporarily and spatially because of its nature. The flow rates for Winter and Spring has increased with forest fragmentations by $8,366m^3/month$ and $72,763m^3/month$ in the S1 subwatershed, experiencing the most forest fragmentation within the Doam-dam watershed. For Summer and Fall, the flow rate has increased by $149,901m^3/month$ and $107,109m^3/month$, respectively. It is believed that increased flow rates contributed significant amounts of soil erosion and diffused nonpoint source pollutants into the receiving water bodies. With the forest fragmentation in the S1 watershed, the average sediment concentration values for Winter and Spring increased by 5.448mg/L and 13.354mg/L, respectively. It is believed that the agricultural area, which were forest before the forest fragmentation, are responsible for increased soil erosion and sediment yield during the spring thaw and snow melts. For Spring and Fall, the sediment concentration values increased by 20.680mg/L and 24.680mg/L, respectively. Compared with Winter and Spring, the increased precipitation during Summer and Fall contributed more soil erosion and increased sediment concentration value in the stream. Based on the results obtained from the analysis performed in this study, the stream flow and sediment concentration values has increased with forest fragmentation within the S1 subwatershed. These increased flow and soil erosion could contribute the eutrophication in the receiving water bodies. This results show that natural functionalities of the forest, such as flood control, soil erosion protection, and water quality improvement, can be easily lost with on-going forest fragmentation within the watershed. Thus, the minimize the negative impacts of forest fragmentation, comprehensive land use planning at watershed scale needs to be developed and implemented based on the results obtained in this research.

  • PDF

Evaluation of Accuracy Improvement of SWAT Model for the Yongdam-Dam Watershed based on Multi-Point Hydrological Observations (용담댐유역의 다지점 유량관측 자료 이용에 따른 SWAT 모형의 정확도 향상성 평가)

  • SHIN, Hyung-Jin;PARK, Min-Ji;LEE, Ji-Won;HWANG, Eui-Ho;KANG, Seok-Man;CHAE, Hyo-Sok
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.3
    • /
    • pp.104-118
    • /
    • 2018
  • This study is to evaluate the accuracy improvement of the model using SWAT(Soil and Water Assessment Tool) model and multi - point hydrological observation data. The watershed is located in the Yongdam Dam($930.4km^2$), the Donghyang($165.5km^2$), the Chuncheon($290.9km^2$), the Juchun($57.8km^2$) and the Seokjeong($80.5km^2$). The watershed covers 70.0 % forest. In order to improve the accuracy of the model, precipitation data were used from two weather stations(Jangsu, Geumsan) and 16 AWS stations daily precipitation data(2003~2011) managed by KMA, MLIT, and K-water. Based on the reliable data of the Yongam test basin in 2003~2011, the runoff of single point (Yongdam dam) and multi-point (Donghyang, Chuncheon, Jucheon, Seokjeong). Simulation results show that the $R^2$ of the single subwatershed (Donghyang, Chuncheon, Jucheon, Seokjeong) is single point(0.84) and multipoint(0.88). For model efficiency coefficient of Nash-Sutcliffe at single point(0.45) and multipoint(0.70).