Earth tube system can be installed in many ways. However, performance data on earth tube system is still insufficient. Therefore, in this study seven design parameters of earth tube systems were chosen such as underground earth tube length, depth, tube thermal conductivity, thickness, radius, soil conditions, and fan type. And the change effects in the values of the seven parameters on earth tube exit temperatures and heat transfer rate were examined through Energyplus simulations.
To analyze the influence of various groundwater flow rates (specific discharge) on BHE system with balanced and unbalanced energy loads under assuming same initial temperature (15℃) of ground and groundwater, numerical modeling using FEFLOW was used for this study. When groundwater flow is increased from 1 × 10−7 to 4 × 10−7m/s under balanced energy load, the performance of BHE system is improved about 26.7% in summer and 22.7% at winter time in a single BHE case as well as about 12.0~18.6% in summer and 7.6~8.7% in winter time depending on the number of boreholes in the grid, their array type, and bore hole separation in multiple BHE system case. In other words, the performance of BHE system is improved due to lower avT in summer and higher avT in winter time when groundwater flow becomes larger. On the contrary it is decreased owing to higher avT in summer and lower avT in winter time when the numbers of BHEs in an array are increased, Geothermal plume created at down-gradient area by groundwater flow is relatively small in balanced load condition while quite large in unbalanced load condition. Groundwater flow enhances in general the thermal efficiency by transferring heat away from the BHEs. Therefore it is highly required to obtain and to use adequate informations on hydrogeologic characterristics (K, S, hydraulic gradient, seasonal variation of groundwater temperature and water level) along with integrating groundwater flow and also hydrogeothermal properties (thermal conductivity, seasonal variation of ground temperatures etc.) of the relevant area for achieving the optimal design of BHE system.
Open-loop groundwater heat pump (GWHP) system generally has benefits such as a higher coefficient of performance (COP), lower initial cost, and flexible system size. The hydrogeological conditions in Korea have the potential to facilitate the use of the GWHP system because a large number of monitoring wells show stable groundwater temperatures, shallow water levels, and high well yields. However, few studies have been performed in Korea regarding the GWHP system and the most studies among them dealt with Standing Column Well (SCW). Because the properties of the aquifer have an influence on designing open-loop systems, it is necessary to perform studies on various hydrogeological settings. In this study, the hydrogeological and thermal properties were estimated through various tests in the riverside alluvial layer where a GWHP system was installed. Under different groundwater flow velocities and pumping and injection rates, a sensitivity analysis was performed to evaluate the effect of such properties on the design of open-loop systems. The results showed that hydraulic conductivity and thermal dispersivity of the aquifer are the most sensitive parameters in terms of performance and environmental aspects, and sensitivities of the properties depend on conditions.
대수층 축열 에너지(ATES) 시스템은 지반의 특성과 이용량에 따라 매우 경제적인 새로운 대체에너지로 이용될 수 있다. 적절한 ATES 시스템 설계를 통하여 주어진 수리지질 특성에 적합한 ATES 시스템을 개발하기 위해서는 대수 층내 수리열역학적 과정의 이해가 필수적이다. 본 논문에서는 지하수 양수 및 열펌프에 이용된 불을 재주입하는 방식의 지하수 열펌프 운영에 대한 두 가지 시나리오를 통하여 두 개의 층으로 이루어진 대수층 모델에 적용하여 대수층내 열 저장에 대한 수리열역학적 현상을 시뮬레이션하였다. 첫 번째 시나리오에서는 양수 우물과 주입 우물을 계절에 따라 서로 교대로 시스템을 운영한 경우에 열 거동에 의한 온도 분포와 지하수위를 시뮬레이션 하였으며, 두 번째는 주입과 양수 우물 위치를 고정하여 시뮬레이션 하였다. 356일 이후 주입 우물 주변의 온도 분포는 주입수의 온도와 주입정으로 부터의 거리에 지배적인 영향을 받는 것으로 나타났다. 지표온도 분포는 30과 50 m 심도의 온도 분포에 비하면 미미한 변화만 나타났으며, 각 층에서의 열 거동은 공극률과 지하수의 유동 특성에 따라 매우 민감한 것으로 나타났다. 그리고 양수와 주입우물에서의 지하수위와 온도변화를 모니터링하여 열펌프 운영 방식에 따른 효율성을 실험하고, 두 우물간의 열 간섭현상을 분석하였다.
We cannot imagine any more the environment and energy problems are separated from our lives. The various attempts to solve these problems are made all over the world. In this study it was performed to analyze a different heating and cooling load depending on the earth-sheltering method and kind of soils by using TRNSYS 16 as the first step to establish the design guidelines for earth-sheltered architecture, one of the eco-friendly and low energy consuming building types. After performing this simulation, we found the result like this. It is the most lowest load in case of all of walls and roof being earth-sheltered. But considering of the load reduction rate, the effect of earth-sheltering the exterior vertical wall is more efficient for load reduction than the one of earth-sheltering a roof. And we got a lower thermal load in case of a lower heat conductivity of soil. Afterwards we will conduct a further study for boundary condition at earth-sheltered surface and the simulation analysis about the sensitivity variables. The final goal of this study is preparing the design guidelines for earth-sheltered architecture. so we will contribute to building energy saving.
암석의 동결과 융해 작용의 반복적인 과정은 암반의 기계적인 풍화작용의 중요한 인자 중에 하나이다. 이러한 자연 상태의 과정은 암반 물질의 파쇄에 의해서 풍화를 가속시키고 암반 사면의 표층부에 토양이나 풍화암을 생산한다. 또한 사면의 전단강도 감소를 일으키므로 사면 안정성 분석을 위하여 동결-융해에 의해 유발되는 열화 심도를 계산하는 것은 매우 중요하다. 본 연구에서는 동결-융해에 의한 암반 사면의 열화 심도를 1차원 열전도방정식을 이용하여 계산하였다. 국내 주요 도시의 지난 5년간 기온 자료를 수집하여 기온 분포를 분석하였다. 기온 분포 분석은 국내 암종 분포를 고려하여 수행되었다. 아울러 연구 대상 지역에 분포하는 암석의 열전도율, 비열, 밀도 등에 대한 실내 시험을 수행하였다. 이들 암석의 열적 특성은 열화심도 계산을 위한 입력 인자로서 활용되었다. 본 논문은 암석의 열적 특성의 차이를 의미하는 암종, 외부 기온 등의 영향 인자들과 열화심도 간의 상관관계에 대하여 검토하였다. 최종적으로 계산에 의한 국내 주요 도시의 암반 사면 열화심도 추정 값을 소개하고자 한다.
인공동결공법은 일시적으로 지반의 강성을 높이고 투수계수를 낮추는 지반개량공법으로 지반에 적용가능하다. 하지만, 지하수 흐름과 지반의 불균질성은 동결구근 형성을 불확실하게 하여 공법에 대한 신뢰성을 저해한다. 동결지반 대한 열-수리 유한요소 해석 프로그램을 이용하여, 인공동결공법에서 지하수 흐름속도와 지반의 층상 비균질이 얼음벽 형성을 미치는 영향을 분석하였다. 지하수의 흐름은 원형의 동결구근을 원형에서 타원형을 변형시키며 얼음벽의 완성 소요시간을 증가시킨다. 기존의 이론식은 인접 동결구근의 열적 상호작용을 무시하여, 얼음벽의 완결시간과 한계유속을 과대 평가하였다. 수치해석 결과를 바탕으로 수정식을 제시하였으며 무차원 얼음벽 완결시간에 대한 제안식을 검증하였다. 층상의 비균질 지반에서 투수계수가 큰 지층의 두께와 상대적인 투수계수비는 얼음벽 완결시간과 한계 유속에 중요한 인자인 것으로 나타났다.
Ground source heat pump(GSHP) system is one of the high efficiency heat source systems which utilizes the constant geothermal energy of a underground water or soil. However, the design of conventional GSHP system in the domestic market is dependent on the experience of the designer and the installer, and it causes increase of initial installation cost or degradation of system performance. Therefore, it is necessary to develop a guideline and the optimal design method to maintain stable performance of the system and reduce installation cost. In this study, in order to optimize the GSHP system, design factors according to ground heat exchanger(GHX) type have been examine by simulation tool. Furthermore, the design factors and the correlation of a single U-tube and a double U-tube were analyzed quantitatively through sensitivity analysis. Results indicated that, the length of the ground heat exchanger was greatly influenced by grout thermal conductivity for single U-tube and pipe spacing for double U-tube.
본 연구는 일반 기상 측정에서 에너지 수지를 구할 때 이용되는 지중열류 값과 토양 내 10 cm 깊이에서 측정한 토양온도를 활용하여 태양 복사에너지와 지표면 복사 에너지의 도달과 분배에 중요한 역할을 하는 토양표면의 온도를 예측하고자 수행하였다. 2003년 6월 10일부터 6월 24일까지 측정한 지중열류와 토양온도 그래프에서 토양온도나 지중열류는 주기성을 나타내며 일중 최저 지중열류와 최고 토양온도 사이에는 위상편차가 존재한다. 토심 5 cm에서 측정하여 시간별로 평균한 토양온도와 지중열류 사이에는 2시간의 시간지연이 존재하며 토양온도와 시 공간상에서의 지중열류는 정의 상관관계를 보였다. 이는 단위체적 당 열용량과 깊이에 따른 열량의 변화율이 태양에너지와 지표면 복사를 통한 지중열류에 비례한다는 것을 의미한다. 예측된 토양 표면온도는 시간별로 평균하였을 때 그 평균온도가 $20^{\circ}C$를 넘어 여름철의 기온을 반영하였으며 모양도 주기함수 형태를 보였다. 진폭은 $4.5^{\circ}C$로서 10 cm 깊이에서의 진폭인 $3.4^{\circ}C$보다 $1.1^{\circ}C$ 높았으며 최저온도가 나타난 시간은 토양표면의 경우는 오전 8시, 10 cm 깊이에서는 오전 9시였으며 최고온도가 나타난 시간은 토양표면은 16시, 10 cm 깊이는 19시이었다. 시간별로 평균하지 않았을 때의 최고와 최저온도는 각각 33.2, $16.5^{\circ}C$ 였으며, 토양표면온도 분포는 $15-20^{\circ}C$가 5.3%, $20-25^{\circ}C$가 65.6%, $25-30^{\circ}C$가 28.1%, $30-35^{\circ}C$가 1%로 대부분의 온도는 $20-25^{\circ}C$ 범위의 값을 나타냈다. 예측된 토양표면온도의 검증을 위해 토양표면 온도와 10 cm 깊이의 토양온도를 가지고 계산한 산술 평균과 토심 5 cm에서 측정한 토양온도를 비교하였다. 또한, 그 과정을 통해 얻어진 추정회귀모형은 P값이 0.001보다 작아 유의성이 인정 되었다. 회귀모형의 결정계수는 0.968이었고 표준오차는 0.38로 예측된 토양표면온도는 추정 회귀모형에 의해 실제 값에 가깝게 추정할 수 있을 것이다.
지중냉각이나 양액냉각과 같은 근권부 냉각은 뿌리의 활력 증진, 양수분 흡수력의 향상, 작물체온의 강하 및 고온스트레스의 감소 등에 효과가 있는 것으로 알려져 있으며, 또한 온실 전체를 냉방하는것 보다 경제적이다. 따라서 본 연구에서는 지중냉각시스템을 경제적인 고온극복 방법중의 하나로 생각하고, 기술을 체계화하기 위한 시도로 지중냉각시스템의 열전달 특성을 분석하여 냉각부하를 산정하기 위한 실험을 수행하였다. 지중열류 측정자료로부터 힘수비에 따른 토양의 열전도율을 분석하였으며, 함수비 19~36%의 범위에서 열전도율은 0.83~0.96W.m$^{-}$.$^{\circ}C$$^{-}$로 직선적인 증가를 보였다. 일사량, 지표온도 및 기온의 관측치로부터 일사량에 따른 지표온도 상승을 회귀분석한 결과 거의 직선적인 관계를 보였으며, 지표온도는 실내 수평면 일사량 300~800W.m$^{-2}$ 범위에서 작물이 없는 경우 3.5~7.$0^{\circ}C$,작물이 지표면을 거의 덮고 있는 경우 1.0~2.5$^{\circ}C$ 정도 기온보다 상승하는 것으로 나타났다. 실험자료를 이용하여 온실의 설계기온과 냉각설정 지온, 일사량 및 토양의 함수비에 따른 지중냉각시스템의 냉각부하를 구하였다. 실내일사량 300~600W.m$^{-2}$ , 토양함수비 20~40%의 범위에서 기온과 지온의 차이를 1$0^{\circ}C$로 유지하기 위해서는 46~59W.m$^{-2}$ 의 냉각열량이 필요한 것으로 나타났다. 보다 정확한 설계자료의 구축을 위해서는 다양한 조건별 실험을 추가로 수행해야 할 것으로 생각된다.EX>$\mu$$_{r}$′) and the dielectric loss ($\varepsilon$$_{r}$"/$\varepsilon$$_{r}$′) were increased. It was caused that the absorption characteristics of the absorber were improved. The conduction loss and magnetic loss were expected to be occurred together because two matching frequencies were shown with carbon addition. It was confirmed that the matching frequency of the microwave absorber could be controlled by controlling heat-treatment temperatures and carbon additions.ons.tions.加的)으로 되거나 과가황(過加黃)이 될 우려가 있는 제조공정(製造工程)에서는 흔히들 이 방법(方法)을 무시(無視)하고 있다. 여기서 강조(强調)해 두어야 할 것은 항상 제품(製品)의 외부(外部)를 완전(完全)히 가황(加黃)시킬 필요(必要)는 없다는 것이다. 다공성(多孔性)이나 기포생성(氣泡生成)을 조장(助長)하는 불량가황상태(不良加黃狀態)와 표면(表面)에서의 과가황상태간(過加黃狀態間)의 균형(均衡)을 취(取)해 줘야 하는데 물론(勿論) 이때는 가황시간(加黃時間)을 단축(短縮)시켜야 한다는 경제적(經濟的)인 측면(側面)도 아울러 고려(考慮)해야 한다. 이것은 고무기술자(技術者)가 당면(當面)해야할 과제(課題)
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.