• 제목/요약/키워드: Soil Thermal Conductivity

검색결과 99건 처리시간 0.022초

지중튜브시스템 주요 설계 변수의 성능 평가 (Evaluation on the Performance of Design Parameters in Earth Tube System)

  • 황용호;황석호;최정민
    • 한국태양에너지학회 논문집
    • /
    • 제36권3호
    • /
    • pp.87-94
    • /
    • 2016
  • Earth tube system can be installed in many ways. However, performance data on earth tube system is still insufficient. Therefore, in this study seven design parameters of earth tube systems were chosen such as underground earth tube length, depth, tube thermal conductivity, thickness, radius, soil conditions, and fan type. And the change effects in the values of the seven parameters on earth tube exit temperatures and heat transfer rate were examined through Energyplus simulations.

지하수류가 밀폐형 천공 지중열교환기 성능에 미치는 영향(1) (An Influence of Groundwater Flow on Performance of Closed Borehole Heat Exchangers (Part-1))

  • 한정상;한찬;윤운상;김영식
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제21권3호
    • /
    • pp.64-81
    • /
    • 2016
  • To analyze the influence of various groundwater flow rates (specific discharge) on BHE system with balanced and unbalanced energy loads under assuming same initial temperature (15℃) of ground and groundwater, numerical modeling using FEFLOW was used for this study. When groundwater flow is increased from 1 × 10−7 to 4 × 10−7m/s under balanced energy load, the performance of BHE system is improved about 26.7% in summer and 22.7% at winter time in a single BHE case as well as about 12.0~18.6% in summer and 7.6~8.7% in winter time depending on the number of boreholes in the grid, their array type, and bore hole separation in multiple BHE system case. In other words, the performance of BHE system is improved due to lower avT in summer and higher avT in winter time when groundwater flow becomes larger. On the contrary it is decreased owing to higher avT in summer and lower avT in winter time when the numbers of BHEs in an array are increased, Geothermal plume created at down-gradient area by groundwater flow is relatively small in balanced load condition while quite large in unbalanced load condition. Groundwater flow enhances in general the thermal efficiency by transferring heat away from the BHEs. Therefore it is highly required to obtain and to use adequate informations on hydrogeologic characterristics (K, S, hydraulic gradient, seasonal variation of groundwater temperature and water level) along with integrating groundwater flow and also hydrogeothermal properties (thermal conductivity, seasonal variation of ground temperatures etc.) of the relevant area for achieving the optimal design of BHE system.

개방형 지열시스템의 효율적 설계를 위한 영향인자에 대한 연구 (A Study on Significant Parameters for Efficient Design of Open-loop Groundwater Heat Pump (GWHP) Systems)

  • 박병학;전원탁;이보현;이강근
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제20권4호
    • /
    • pp.41-50
    • /
    • 2015
  • Open-loop groundwater heat pump (GWHP) system generally has benefits such as a higher coefficient of performance (COP), lower initial cost, and flexible system size. The hydrogeological conditions in Korea have the potential to facilitate the use of the GWHP system because a large number of monitoring wells show stable groundwater temperatures, shallow water levels, and high well yields. However, few studies have been performed in Korea regarding the GWHP system and the most studies among them dealt with Standing Column Well (SCW). Because the properties of the aquifer have an influence on designing open-loop systems, it is necessary to perform studies on various hydrogeological settings. In this study, the hydrogeological and thermal properties were estimated through various tests in the riverside alluvial layer where a GWHP system was installed. Under different groundwater flow velocities and pumping and injection rates, a sensitivity analysis was performed to evaluate the effect of such properties on the design of open-loop systems. The results showed that hydraulic conductivity and thermal dispersivity of the aquifer are the most sensitive parameters in terms of performance and environmental aspects, and sensitivities of the properties depend on conditions.

대수층 축열 에너지(ATES) 활용 시스템 모델의 설계인자 추정을 위한 시뮬레이션 (Simulation for the Estimation of Design Parameters in an Aquifer Thermal Energy Storage (ATES) Utilization System Model)

  • 심병완
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제10권4호
    • /
    • pp.54-61
    • /
    • 2005
  • 대수층 축열 에너지(ATES) 시스템은 지반의 특성과 이용량에 따라 매우 경제적인 새로운 대체에너지로 이용될 수 있다. 적절한 ATES 시스템 설계를 통하여 주어진 수리지질 특성에 적합한 ATES 시스템을 개발하기 위해서는 대수 층내 수리열역학적 과정의 이해가 필수적이다. 본 논문에서는 지하수 양수 및 열펌프에 이용된 불을 재주입하는 방식의 지하수 열펌프 운영에 대한 두 가지 시나리오를 통하여 두 개의 층으로 이루어진 대수층 모델에 적용하여 대수층내 열 저장에 대한 수리열역학적 현상을 시뮬레이션하였다. 첫 번째 시나리오에서는 양수 우물과 주입 우물을 계절에 따라 서로 교대로 시스템을 운영한 경우에 열 거동에 의한 온도 분포와 지하수위를 시뮬레이션 하였으며, 두 번째는 주입과 양수 우물 위치를 고정하여 시뮬레이션 하였다. 356일 이후 주입 우물 주변의 온도 분포는 주입수의 온도와 주입정으로 부터의 거리에 지배적인 영향을 받는 것으로 나타났다. 지표온도 분포는 30과 50 m 심도의 온도 분포에 비하면 미미한 변화만 나타났으며, 각 층에서의 열 거동은 공극률과 지하수의 유동 특성에 따라 매우 민감한 것으로 나타났다. 그리고 양수와 주입우물에서의 지하수위와 온도변화를 모니터링하여 열펌프 운영 방식에 따른 효율성을 실험하고, 두 우물간의 열 간섭현상을 분석하였다.

복토 주택의 복토 방법에 따른 열부하의 변화에 관한 연구 (A Study on the Variation of the Thermal Load for a House According to the Earth Sheltering Method)

  • 이재혁;최원기;서승직;조동우
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 춘계학술발표대회 논문집
    • /
    • pp.166-171
    • /
    • 2008
  • We cannot imagine any more the environment and energy problems are separated from our lives. The various attempts to solve these problems are made all over the world. In this study it was performed to analyze a different heating and cooling load depending on the earth-sheltering method and kind of soils by using TRNSYS 16 as the first step to establish the design guidelines for earth-sheltered architecture, one of the eco-friendly and low energy consuming building types. After performing this simulation, we found the result like this. It is the most lowest load in case of all of walls and roof being earth-sheltered. But considering of the load reduction rate, the effect of earth-sheltering the exterior vertical wall is more efficient for load reduction than the one of earth-sheltering a roof. And we got a lower thermal load in case of a lower heat conductivity of soil. Afterwards we will conduct a further study for boundary condition at earth-sheltered surface and the simulation analysis about the sensitivity variables. The final goal of this study is preparing the design guidelines for earth-sheltered architecture. so we will contribute to building energy saving.

  • PDF

국내 주요 암종별 사면의 동결-융해에 의한 열화심도 계산 (Calculation of Deterioration Depth of Major Rock Type Slopes caused by Freezing-Thawing in Korea)

  • 권오일;백용;임성빈;서용석
    • 지질공학
    • /
    • 제17권3호
    • /
    • pp.359-365
    • /
    • 2007
  • 암석의 동결과 융해 작용의 반복적인 과정은 암반의 기계적인 풍화작용의 중요한 인자 중에 하나이다. 이러한 자연 상태의 과정은 암반 물질의 파쇄에 의해서 풍화를 가속시키고 암반 사면의 표층부에 토양이나 풍화암을 생산한다. 또한 사면의 전단강도 감소를 일으키므로 사면 안정성 분석을 위하여 동결-융해에 의해 유발되는 열화 심도를 계산하는 것은 매우 중요하다. 본 연구에서는 동결-융해에 의한 암반 사면의 열화 심도를 1차원 열전도방정식을 이용하여 계산하였다. 국내 주요 도시의 지난 5년간 기온 자료를 수집하여 기온 분포를 분석하였다. 기온 분포 분석은 국내 암종 분포를 고려하여 수행되었다. 아울러 연구 대상 지역에 분포하는 암석의 열전도율, 비열, 밀도 등에 대한 실내 시험을 수행하였다. 이들 암석의 열적 특성은 열화심도 계산을 위한 입력 인자로서 활용되었다. 본 논문은 암석의 열적 특성의 차이를 의미하는 암종, 외부 기온 등의 영향 인자들과 열화심도 간의 상관관계에 대하여 검토하였다. 최종적으로 계산에 의한 국내 주요 도시의 암반 사면 열화심도 추정 값을 소개하고자 한다.

얼음벽 형성에 대한 지하수 흐름의 영향 (Effect of Groundwater Flow on Ice-wall Integrity)

  • 신호성;김진욱;이장근
    • 한국지반공학회논문집
    • /
    • 제34권11호
    • /
    • pp.43-55
    • /
    • 2018
  • 인공동결공법은 일시적으로 지반의 강성을 높이고 투수계수를 낮추는 지반개량공법으로 지반에 적용가능하다. 하지만, 지하수 흐름과 지반의 불균질성은 동결구근 형성을 불확실하게 하여 공법에 대한 신뢰성을 저해한다. 동결지반 대한 열-수리 유한요소 해석 프로그램을 이용하여, 인공동결공법에서 지하수 흐름속도와 지반의 층상 비균질이 얼음벽 형성을 미치는 영향을 분석하였다. 지하수의 흐름은 원형의 동결구근을 원형에서 타원형을 변형시키며 얼음벽의 완성 소요시간을 증가시킨다. 기존의 이론식은 인접 동결구근의 열적 상호작용을 무시하여, 얼음벽의 완결시간과 한계유속을 과대 평가하였다. 수치해석 결과를 바탕으로 수정식을 제시하였으며 무차원 얼음벽 완결시간에 대한 제안식을 검증하였다. 층상의 비균질 지반에서 투수계수가 큰 지층의 두께와 상대적인 투수계수비는 얼음벽 완결시간과 한계 유속에 중요한 인자인 것으로 나타났다.

수직밀폐형 지중열교환기의 최적설계를 위한 설계인자 영향도 분석 (Sensitivity Analysis on Design Factor of Ground Heat Exchanger for Optimum Design of Vertical Ground Source Heat Pump System)

  • 배상무;김홍교;남유진
    • 대한건축학회논문집:구조계
    • /
    • 제34권3호
    • /
    • pp.87-93
    • /
    • 2018
  • Ground source heat pump(GSHP) system is one of the high efficiency heat source systems which utilizes the constant geothermal energy of a underground water or soil. However, the design of conventional GSHP system in the domestic market is dependent on the experience of the designer and the installer, and it causes increase of initial installation cost or degradation of system performance. Therefore, it is necessary to develop a guideline and the optimal design method to maintain stable performance of the system and reduce installation cost. In this study, in order to optimize the GSHP system, design factors according to ground heat exchanger(GHX) type have been examine by simulation tool. Furthermore, the design factors and the correlation of a single U-tube and a double U-tube were analyzed quantitatively through sensitivity analysis. Results indicated that, the length of the ground heat exchanger was greatly influenced by grout thermal conductivity for single U-tube and pipe spacing for double U-tube.

Heat flux를 이용한 토양 표면 온도 예측 (Estimation of Soil Surface Temperature by Heat Flux in Soil)

  • 허승오;김원태;정강호;하상건
    • 한국토양비료학회지
    • /
    • 제37권3호
    • /
    • pp.131-135
    • /
    • 2004
  • 본 연구는 일반 기상 측정에서 에너지 수지를 구할 때 이용되는 지중열류 값과 토양 내 10 cm 깊이에서 측정한 토양온도를 활용하여 태양 복사에너지와 지표면 복사 에너지의 도달과 분배에 중요한 역할을 하는 토양표면의 온도를 예측하고자 수행하였다. 2003년 6월 10일부터 6월 24일까지 측정한 지중열류와 토양온도 그래프에서 토양온도나 지중열류는 주기성을 나타내며 일중 최저 지중열류와 최고 토양온도 사이에는 위상편차가 존재한다. 토심 5 cm에서 측정하여 시간별로 평균한 토양온도와 지중열류 사이에는 2시간의 시간지연이 존재하며 토양온도와 시 공간상에서의 지중열류는 정의 상관관계를 보였다. 이는 단위체적 당 열용량과 깊이에 따른 열량의 변화율이 태양에너지와 지표면 복사를 통한 지중열류에 비례한다는 것을 의미한다. 예측된 토양 표면온도는 시간별로 평균하였을 때 그 평균온도가 $20^{\circ}C$를 넘어 여름철의 기온을 반영하였으며 모양도 주기함수 형태를 보였다. 진폭은 $4.5^{\circ}C$로서 10 cm 깊이에서의 진폭인 $3.4^{\circ}C$보다 $1.1^{\circ}C$ 높았으며 최저온도가 나타난 시간은 토양표면의 경우는 오전 8시, 10 cm 깊이에서는 오전 9시였으며 최고온도가 나타난 시간은 토양표면은 16시, 10 cm 깊이는 19시이었다. 시간별로 평균하지 않았을 때의 최고와 최저온도는 각각 33.2, $16.5^{\circ}C$ 였으며, 토양표면온도 분포는 $15-20^{\circ}C$가 5.3%, $20-25^{\circ}C$가 65.6%, $25-30^{\circ}C$가 28.1%, $30-35^{\circ}C$가 1%로 대부분의 온도는 $20-25^{\circ}C$ 범위의 값을 나타냈다. 예측된 토양표면온도의 검증을 위해 토양표면 온도와 10 cm 깊이의 토양온도를 가지고 계산한 산술 평균과 토심 5 cm에서 측정한 토양온도를 비교하였다. 또한, 그 과정을 통해 얻어진 추정회귀모형은 P값이 0.001보다 작아 유의성이 인정 되었다. 회귀모형의 결정계수는 0.968이었고 표준오차는 0.38로 예측된 토양표면온도는 추정 회귀모형에 의해 실제 값에 가깝게 추정할 수 있을 것이다.

온실내 근권부의 지중냉각부하 추정 (Estimation of Soil Cooling Load in the Root Zone of Greenhouses)

  • 남상운
    • 생물환경조절학회지
    • /
    • 제11권4호
    • /
    • pp.151-156
    • /
    • 2002
  • 지중냉각이나 양액냉각과 같은 근권부 냉각은 뿌리의 활력 증진, 양수분 흡수력의 향상, 작물체온의 강하 및 고온스트레스의 감소 등에 효과가 있는 것으로 알려져 있으며, 또한 온실 전체를 냉방하는것 보다 경제적이다. 따라서 본 연구에서는 지중냉각시스템을 경제적인 고온극복 방법중의 하나로 생각하고, 기술을 체계화하기 위한 시도로 지중냉각시스템의 열전달 특성을 분석하여 냉각부하를 산정하기 위한 실험을 수행하였다. 지중열류 측정자료로부터 힘수비에 따른 토양의 열전도율을 분석하였으며, 함수비 19~36%의 범위에서 열전도율은 0.83~0.96W.m$^{-}$.$^{\circ}C$$^{-}$로 직선적인 증가를 보였다. 일사량, 지표온도 및 기온의 관측치로부터 일사량에 따른 지표온도 상승을 회귀분석한 결과 거의 직선적인 관계를 보였으며, 지표온도는 실내 수평면 일사량 300~800W.m$^{-2}$ 범위에서 작물이 없는 경우 3.5~7.$0^{\circ}C$,작물이 지표면을 거의 덮고 있는 경우 1.0~2.5$^{\circ}C$ 정도 기온보다 상승하는 것으로 나타났다. 실험자료를 이용하여 온실의 설계기온과 냉각설정 지온, 일사량 및 토양의 함수비에 따른 지중냉각시스템의 냉각부하를 구하였다. 실내일사량 300~600W.m$^{-2}$ , 토양함수비 20~40%의 범위에서 기온과 지온의 차이를 1$0^{\circ}C$로 유지하기 위해서는 46~59W.m$^{-2}$ 의 냉각열량이 필요한 것으로 나타났다. 보다 정확한 설계자료의 구축을 위해서는 다양한 조건별 실험을 추가로 수행해야 할 것으로 생각된다.EX>$\mu$$_{r}$′) and the dielectric loss ($\varepsilon$$_{r}$"/$\varepsilon$$_{r}$′) were increased. It was caused that the absorption characteristics of the absorber were improved. The conduction loss and magnetic loss were expected to be occurred together because two matching frequencies were shown with carbon addition. It was confirmed that the matching frequency of the microwave absorber could be controlled by controlling heat-treatment temperatures and carbon additions.ons.tions.加的)으로 되거나 과가황(過加黃)이 될 우려가 있는 제조공정(製造工程)에서는 흔히들 이 방법(方法)을 무시(無視)하고 있다. 여기서 강조(强調)해 두어야 할 것은 항상 제품(製品)의 외부(外部)를 완전(完全)히 가황(加黃)시킬 필요(必要)는 없다는 것이다. 다공성(多孔性)이나 기포생성(氣泡生成)을 조장(助長)하는 불량가황상태(不良加黃狀態)와 표면(表面)에서의 과가황상태간(過加黃狀態間)의 균형(均衡)을 취(取)해 줘야 하는데 물론(勿論) 이때는 가황시간(加黃時間)을 단축(短縮)시켜야 한다는 경제적(經濟的)인 측면(側面)도 아울러 고려(考慮)해야 한다. 이것은 고무기술자(技術者)가 당면(當面)해야할 과제(課題)