• Title/Summary/Keyword: Soil Temperature

Search Result 2,856, Processing Time 0.031 seconds

Evaluation of $N_2O$ Emissions with Changes of Soil Temperature, Soil Water Content and Mineral N in Red Pepper and Soybean Field (고추와 콩 재배에서 토양온도, 토양수분과 무기태질소 변화에 따른 아산화질소 배출 평가)

  • Kim, Gun-Yeob;So, Kyu-Ho;Jeong, Hyun-Cheol;Shim, Kyo-Moon;Lee, Seul-Bi;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.880-885
    • /
    • 2010
  • Importance of climate change and its impact on agriculture and environment has increased with a rise of greenhouse gases (GHGs) concentration in Earth's atmosphere. Nitrous oxide ($N_2O$) emission in upland fields were assessed in terms of emissions and their control at the experimental plots of National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA) located in Suwon city. It was evaluated $N_2O$ emissions at different soil water content, soil temperature, and mineral N conditions in a upland cultivating red pepper and soy bean. The results were as follows: 1) There were significant correlation between amount of $N_2O$ emissions and soil temperature, soil water content and mineral N conditions showed $0.528^{**}$, $0.790^{***}$ and $0.937^{***}$ in red pepper field and $0.658^{***}$, $0.710^{***}$ and $0.865^{***}$ in soybean field, respectively. 2) From the contribution rate analysis as to contribution factors for $N_2O$ emission, it appeared that contribution rate was in the order of mineral N (71.9%), soil moisture content (23.6%), and soil temperature (4.5%) in pepper field and mineral N (65.5%), soil moisture contents (19.2%), and soil temperature (15.2%) in soybean field.

Property of Thermal Conduction of Reinforced Soil Wall (보강 흙벽의 열전도 특성)

  • 장병욱;서동욱;박영곤
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.638-644
    • /
    • 1999
  • The objectives of the study are to investigate thermal conductivity(TC) and coefficient of thermal transmission (CTT) according to the type of soils, the presence of reinforceemnt, temperature, relative humidity and to analyze experimentally the characteristics of thermal transfer of reinforced soil wall. Results are summarized as follows ; 1) Clayey soil has high value of TC and CTT than sandy soil. 2) TC and CTT of reinforced soil wall is about 6∼17% higher than those of reinforced one, 3) It is founded that the effect of relative humidity on the soil wall is important at the same temperature and 4) As the temperature is high, it is appeared that TC and CTT are high.

  • PDF

Seasonal Soil Temperature and Moisture Regimes in a Ginseng Garden

  • Bailey, W.G.;Stathers, R.J.;Dobud, A.G.
    • Journal of Ginseng Research
    • /
    • v.12 no.1
    • /
    • pp.53-62
    • /
    • 1988
  • A field experiment was conducted in the arid interior of British Columbia, Canada to assess the seasonal soil temperature and moisture regimes in an American ginseng garden. As a consequence of the man-modified microclimate (elevated shade canopy and surface covering of mulch), the growing environment of the crop was fundamentally altered when compared to adjacent agricultural growing environments. In the ginseng garden, soil temperatures were found to remain low throughout the growing season whereas soil moisture remained high when compared with the outside garden environment. These results indicate that even in the hot, arid environment of the interior of British Columbia, the growing of ginseng is undertaken in sub-optimal conditions for the major part of the growing season. This poses challenges for the producers of the crop to modify the architecture of the gardens to enhance the soil regime without creating a deleterious aerial environment.

  • PDF

Soil Emission Measurements of N2O, CH4 and CO2 from Intensively Managed Upland Cabbage Field (배추 밭에서의 N2O, CH4, CO2 토양배출량 측정 및 특성 연구: 주요온실가스 배출량 측정 및 지표생태변화에 따른 특성 연구)

  • Kim, Deug-Soo;Na, Un-Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.3
    • /
    • pp.313-325
    • /
    • 2011
  • From October 2009 to June 2010, major greenhouse gases (GHG: $N_2O$, $CH_4$, $CO_2$) soil emission were measured from upland cabbage field at Kunsan ($35^{\circ}$56'23"N, $126^{\circ}$43'14"E), Korea by using closed static chamber method. The measurements were conducted mostly from 10:00 to 18:00LST during field experiment days (total 28 days). After analyzing GHG concentrations inside of flux chamber by using a GC equipped with a methanizer (Varian CP3800), the GHG fluxes were calculated from a linear regression of the changes in the concentrations with time. Soil parameters (e.g. soil moisture, temperature, pH, organic C, soil N) were also measured at the sampling site. The average soil pH and soil moisture were ~pH $5.42{\pm}0.03$ and $70.0{\pm}1.8$ %WFPS (water filled pore space), respectively. The ranges of GHG flux during the experimental period were $0.08\sim8.40\;mg/m^2{\cdot}hr$ for $N_2O$, $-92.96\sim139.38mg/m^2{\cdot}hr$ for $CO_2$, and $-0.09\sim0.05mg/m^2{\cdot}hr$ for $CH_4$, respectively. It revealed that monthly means of $CO_2$ and $CH_4$ flux during October (fall) were positive and significantly higher than those (negative value) during January (winter) when subsoil have low temperature and relatively high moisture due to snow during the winter measurement period. Soil mean temperature and moisture during these months were $17.5{\pm}1.2^{\circ}C$, $45.7{\pm}8.2$%WFPS for October; and $1.4{\pm}1.3^{\circ}C$, $89.9{\pm}8.8$ %WFPS for January. It may indicate that soil temperature and moisture have significant role in determining whether the $CO_2$ and $CH_4$ emission or uptake take place. Low temperature and high moisture above a certain optimum level during winter could weaken microbial activity and the gas diffusion in soil matrix, and then make soil GHG emission to the atmosphere decrease. Other soil parameters were also discussed with respect to GHG emissions. Both positive and negative gas fluxes in $CH_4$ and $CO_2$ were observed during these measurements, but not for $N_2O$. It is likely that $CH_4$ and $CO_2$ gases emanated from soil surface or up taken by the soil depending on other factors such as background concentrations and physicochemical soil conditions.

Characteristics of Soil Moisture Distributions at the Spatio-Temporal Scales Based on the Land Surface Features Using MODIS Images (MODIS 이미지를 이용한 지표특성에 따른 토양수분의 시·공간적 분포 특성)

  • Kim, Sangwoo;Shin, Yongchul;Lee, Taehwa;Lee, Sang-Ho;Choi, Kyung-Sook;Park, Younshik;Lim, Kyoungjae;Kim, Jonggun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.6
    • /
    • pp.29-37
    • /
    • 2017
  • In this study, we analyzed the impacts of land surface characteristics on spatially and temporally distributed soil moisture values at the Yongdam and Soyang-river dam watersheds in 2014 and 2015. The soil moisture, NDVI (Normalized Difference Vegetation Index) and temperature values at the spatio-temporal scales were estimated using satellite-based MODIS (MODerate Resolution Imaging Spectroradiometer) products. Then the Pearson correlations between soil moisture and land surface characteristics (NDVI, temperature and DEM-digital elevation model) were estimated and analyzed, respectively. Overall, the monthly soil moisture values at the time step were highly influenced by the precipitation amounts. Also, the results showed that the soil moisture has the strong correlation with DEM while the temperature was inversely correlated with the soil moisture. However the monthly correlations between NDVI and soil moisture were highly varied along the time step. These findings indicated that water loss near the land surface are highly occurred by soil and plant activities as evapotranspiration and infiltration during the no/less precipitation period. But the high precipitation amounts reduce the impacts of land surface characteristics because of saturated condition of land surface. Thus these results demonstrated that soil moisture values are highly correlated with land surface characteristics. Our findings can be useful for water resources/environmental management, agricultural drought, etc.

Relationship between the Cathodic Protection of Pipe Buried in Soil and Environmental Factors (토양 매설 배관의 음극방식과 환경인자 간의 상관관계)

  • Choi, S.H.;Won, S.Y.;Yoo, Y.R.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.372-380
    • /
    • 2022
  • The external corrosion control of buried pipes can be achieved by a combination of coatings and cathodic protection to maximize effectiveness. One of the factors affecting cathodic protection is the environmental soil conditions. Because soil is a kind of electrolyte, the environmental conditions of soil may be changed by the atmospheric environment. Therefore, in this study, changes in environmental soil factors by atmospheric environmental factors were monitored. In cathodic protection, on-potential and off-potential were measured from December 2021 to July 2022. The effects of external environmental factors and soil environmental factors on cathodic protection were analyzed. Changes in outdoor temperature affected soil temperature, and soil conductivity had a proportional relationship with soil humidity, but outdoor humidity and precipitation did not significantly affect humidity and conductivity of the soil. In contrast, in cathodic protection, the on-potential was affected by temperature, humidity, the conductivity of the soil, and the anode used, but the off-potential was little affected by these factors.

$N_2O$ Emissions on the Soil of Alpine Wetland by Temperature Change (온도 변화에 따른 산지습지 토양의 $N_2O$ 배출 양상)

  • Kim, Sang-Hun;Lim, Sung-Hwan;Choo, Yeon-Sik
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.3
    • /
    • pp.409-418
    • /
    • 2013
  • Global warming due to climate change is a problem facing the entire world. Several factors, such as $CO_2O$ concentration, level of warming, soil temperature, precipitation, water content of soil and denitrification by denitrifying bacteria influence the emission of nitrous oxide ($N_2O$) from soil. In this study, we investigated nitrous oxide emissions from the soil of two wetlands, Jilmoineup in Mt. Odae and Moojechineup in Mt. Jungjok, according to temperature change. Soil collected in Jilmoineup in July showed increasing $N_2O$ emissions as temperature increases, but did not show any significant differences at $10^{\circ}C$ (p<0.05). Soil of $15^{\circ}C$ and $20^{\circ}C$ showed increasing pattern of $N_2O$ emissions until 24 h. After that, however, there was no difference in temperature. Overall, $N_2O$ emissions showed significant differences according to temperature (p<0.05). Soil collected from Moojechineup in July showed increasing $N_2O$ emissions according to temperature increase, but did not show any significant differences at $10^{\circ}C$ (p<0.05) as was the case for Jilmoineup soil. On the other hand, two wetland soils showed a slight increase of $N_2O$ emissions by additional nitrogen supply, but did not show any significant differences in the presence of nitrogen or between nitrogen sources. In conclusion, increasing temperature the wetland soil increased the emission of $N_2O$, which is a known greenhouse gas. In order to more clearly identify $N_2O$ emissions, various subsequent studies such as the influence and correlation of several factors are required.

Effects of Temperature, Soil Moisture, Soil pH and Light on Root Gall Development of Chinese Cabbage by Plasmodiophora brassicae (배추무사마귀병 뿌리혹의 형성에 미치는 온도, 토양수분, 토양 pH, 광의 영향)

  • 김충회
    • Plant Disease and Agriculture
    • /
    • v.5 no.2
    • /
    • pp.84-89
    • /
    • 1999
  • Development of root galls of clubroot disease on Chinese cabbage seedlings was first observed 17days after inoculation of Plasmodiophora brassicae at $25^{\circ}C$ 4-11days earlier than at 5, 20, 3$0^{\circ}C$ and 35$^{\circ}C$. Subsequent enlargement of root galls was also fastest at $25^{\circ}C$ and 2$0^{\circ}C$ but delayed at 15$^{\circ}C$ and 3$0^{\circ}C$ or above. Chinese cabbage seedlings with root gall formation showed reduction in number of leaves above ground fresh weight and amount of root hairs but increase in root weight, Root galls development was highest at soil moisture level of 80% of maximum soil moisture capacity than at 60% and 100%. Optimum soil pH for root gall development was pH 6 although root galls were formed at a range of pH 5 to 8. Period of light illumination also affected root gall development with the greatest gall development at 12hr/12hr in light/dark period and the least at 8hr/16hr. Site of root gall formation and gall shape did not differ greatly among treatments of temperature soil moisture pH and light experiments.

  • PDF

The fluctuation of soil pathogenic microbes population in radish and chinese cabbage fields (무우 배추 포장내의 병원성 토양미생물 소장)

  • 이왕휴;소인영
    • Korean Journal of Microbiology
    • /
    • v.21 no.1
    • /
    • pp.7-14
    • /
    • 1983
  • In order to study the effects of cropping system and fungicide (Dachigaren) on soil microbes, the seasonal fluctuations of soil microbes in the fields of radish and Chinese cabbage including soil pH, Soil moisture content and soil temperature were investigated on every 15 day interval from the begining of March to late October in 1981. The population of total fungus peaked at the begining of July, while that of total bacteria, at the begining of August. They were affected by soil temperature, however pathogenic microbes seemed to be more related with host plants than the soil temperature, because pathogens showed high density through the whole cultivation period. The pathogenic microbes showed the density of order ; Xanthomonas, Erwinia, Pseudomonas, Agrobacterium and Corynebacterium. Xanthomonas, Erwinia and Pseudomonas, which induced radish and Chinese cabbage diseases were higher than Agrobacterium and Corynebacterium in population densigy. Bacterial soft rot occured at the density of Erwinia $5.9{\sim}6.6{\times}10^5/dry$ soil 1 gram. The density of microbes on continuous fields were higher than that of rotating fields, but there were no significant difference between treated fungicide plot and non treated in the density of microbes, also no difference between Chinese cabbage and radish growing fields.

  • PDF

Soil-Environmental Factors Involved in the Development of Root Rot/Vine on Cucurbits Caused by Monosporascus cannonballus

  • Kwon, Mi-Kyung;Hong, Jeong-Rae;Kim, Yong-Hwan;Kim, Ki-Chung
    • The Plant Pathology Journal
    • /
    • v.17 no.1
    • /
    • pp.45-51
    • /
    • 2001
  • A root rot/vine decline disease occurred naturally on bottle gourd-stocked watermelon, melon, oriental melon and squash grown in greenhouses, but not on these plants grown in fields. Self-rooted watermelon, cucumber, pumpkin and luffa were also proven to be hosts of the pathogen by artificial inoculation in this experiment. The pathogen was identified as Monosporascus cannonballus by comparing microscopic characteristics of fungal structures with those of previously identified fungal strains. Our field investigations showed that the temperature and electric conductivity of soil in infected greenhouses were higher and the soil moisture content was lower than in noninfected greenhouses. To investigate soil-environmental factors affecting disease development, greenhouse trials and inoculation experiments were conducted. The host plants inoculated and grown under conditions of high soil temperature and electrical conductivity ($35\pm2^{\circ}$, 3.2-3.5 mS) and with low soil moisture content (pF 3.0-4.5) were most severely damaged by the fungal disease. Since plants growing in greenhouses ae usually exposed to such environmental conditions, this may be the reason why the monosporascus root rot/vine decline disease has occurred only on cucurbits cultivated in greenhouses but not in field conditions.

  • PDF