• Title/Summary/Keyword: Soil Temperature

Search Result 2,848, Processing Time 0.034 seconds

Phenanthrene 오염토양의 정화를 위한 동전기-생물학적복원기술의 적용과 전류밀도의 영향

  • 김상준;박지연;이유진;양지원
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.181-185
    • /
    • 2004
  • Electrokinetic bioremediation was conducted on phenanthrene-contaminated soil to study the effects of soil temperature and pH on microbial population and removal efficiency at different current densities from 0.63 to 3.13 mA cm$^{-2}$ . Microorganism used in the biodegradation of phenanthrene was Sphingomonas sp. 3Y, which was isolated from a diesel-contaminated site. The microorganism was successfully penetrated into the contaminated soil by electrokinetic phenomena and the highest microbial population was observed in the middle region of soil specimen where soil pH was near neutral. Therefore, phenanthrene removal occurred mainly at anode and middle parts of soil specimen due to a relatively high microbial population. Also, the highest removal efficiency of 68.8% was obtained at 1.88 mA cm$^{-2}$ while low degradation was detected at 3.13 mA cm$^{-2}$ . It was presumably because the soil temperature at 1.88 mAcm$^{-2}$ was close to the appropriate temperature of about 30'c while the temperature increase to above 45$^{\circ}C$ at 3.13 mA cm$^{-2}$ inhibited the microbial activity severely.

  • PDF

Performance Analysis of a Geothermal Heat Pump System Operated by a Diesel Engine (I) - Soil temperature prediction in Pusan and Chinju - (엔진구동 지열 열펌프의 성능 분석 (I) - 부산.진주지방 지중온도 예측 -)

  • 김영복
    • Journal of Biosystems Engineering
    • /
    • v.23 no.2
    • /
    • pp.135-146
    • /
    • 1998
  • The equation to predict the soil temprature of Pusan and Chinju city as a function of time and soil depth for the geothermal energy utilization system and agriculture was devised. The equation was $T(x,t)\;=\;Tm\;-\;To{\cdot}ExP(-{\xi}){\cdot}cos{{\omega}{\cdot}[t-to-x/(2{\cdot}{\alpha}{\cdot}{\omega})^{0.5}]}$ with the soil thermal diffusivity, ${\alpha},\;of\;0.4\;\textrm{m}^2/day,\;0.0375\;\textrm{m}^2/day$ and phase zero point, to, of 24 days, 22.4 days in Pusan and Chinju city, respectively, during ten years from 1987 to 1996. The predicted and measured soil temperatures agreed well with the coefficient of determination of 0.95 at the soil depth of 0.0, 0.5, 1.0, 3.0, 5.0 m. The maximum and minimum temperature in Pusan 3.7, $30.1^{\circ}C$ at soil surface and 14.3, $18.0^{\circ}C$ at the depth of 5.0 m. The total mean temperature of soil in Pusan and Chinju city was about 16.3, $16.0^{\circ}C$, respectively.

  • PDF

The Rate of Soil Respiration in Populus maximowiczii Stand on Volcano Mt. Usu, Northern Japan

  • Moon, Hyun-Shik;Masahiro, Haruki
    • The Korean Journal of Ecology
    • /
    • v.24 no.2
    • /
    • pp.87-91
    • /
    • 2001
  • The response of respiration rates of root, Ao layer and mineral soil to varying environmental factors was studied in Popuius maximowiczii stand (25-year-old) during the growing season of 1997. Soil temperature showed a pronounced seasonal course, in contrast to soil moisture. The mineral soil respiration was high in August, and root and Ao layer respiration, were high in July. An exponential equation best described the relationships between soil temperature and mineral soil respiration, and total soil respiration (r=0.95 and 0.92, p<0.001), respectively. In P. maximowiczii stand, soil respiration rates were reduced by about 19% after removal of the Ao layer, and by about 30% after removal of living root. Therefore, mineral soil respiration seemed to contribute gretly to the total soil respiration (50%).

  • PDF

Predicting an soil temperature in Daegu area (대구지역 지중온도의 변화예측)

  • Kim, Dong-Seok;Hong, Soo-Jin;Park, Jun-Pyo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.4
    • /
    • pp.649-654
    • /
    • 2009
  • Soil temperature is an important tool in predicting a change of climate and agricultural environment together with the change of atmospheric temperature. In this paper, we examine changing patterns of soil temperature measured in 0.5m under ground from 1932 to 1990 and atmospheric temperature from 1961 to 2008, and derive a relationship between atmospheric temperature and soil temperature. Using this model, we predict unmeasured soil temperature in Daegu area and soil temperature is found to be increasing about $0.028^{\circ}C$per a year. Prediction of soil temperature is an important indicator for climate change in Daegu and will be useful information to help us take precautions for global warming, etc.

  • PDF

Effect of water temperature and soil type on infiltration

  • Mina Torabi;Hamed Sarkardeh;S. Mohamad Mirhosseini;Mehrshad Samadi
    • Geomechanics and Engineering
    • /
    • v.32 no.4
    • /
    • pp.445-452
    • /
    • 2023
  • Temperature is one of the important factors affecting the permeability of water in the soil. In the present study, the impact of water temperature on hydraulic conductivity (k) with and without coarse aggregations by considering six types of soils was analyzed. Moreover, the effect of sand and gravel presence in the soil was investigated through the infiltration based on constant and inconstant water head experiments. Results indicated that by increasing the water temperature, adding gravel to sandy soil caused the hydraulic conductivity to raise. It is supposed that the gravel decreased the contact surface between the water and the soil aggregates. It is deduced that due to decreasing kinetic energy, k tends to have lower values. Furthermore, adding the sand to sandy silt-clay soil showed that the sand did not have a marginal effect on the variation of k since the added sand cannot increase the contact surface like gravel. Finally, increasing the main diameter of the soil will increase the effect of the water temperature on hydraulic conductivity.

Changes of Soil Properties and Temperature by Green Manure under Rice-based Cropping System

  • Jeon, Weon-Tai;Kim, Min-Tae;Seong, Ki-Yeong;Lee, Jong-Ki;Oh, In-Seok;Park, Sung-Tae
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.4
    • /
    • pp.413-416
    • /
    • 2008
  • The cultivation of green manure crop is considered as a good management practice by increasing soil organic matter and fertility levels. This experiment was conducted to improve the soil environment under rice-based cropping system at paddy soil (fine loamy, mixed, nonacid, mesic, family of Aeric Fluventic Haplaquepts) in National Institute of Crop Science (NICS), Korea in 2006 to 2007. The variation of soil temperature in green manure plots was lower than without green manure (control) during spring season (April to May). The temperature variation of no tillage plot (broadcast before rice harvest) was the lowest among treatments. After green manure cropping, the soil bulk density and porosity ratio were improved at the top soil. The production of green manure was the highest athairy vetch and barley mixture plot by partial tillage. However, mixture treatment had no improvement on soil organic matter. After rice cropping with green manure application, soil quality was improved such as soil physical properties except mixture treatment. Therefore, we suggest that soil quality should be improved by green manure cultivation under rice-based cropping system.

Evaluation of Ground Temperature and Soil Thermal Diffusivity Using the Soil Temperature Data of KMA (기상청 지중 온도 데이터를 이용한 지중 온도 및 토양 열확산계수 산정)

  • Sohn, Byong-Hu
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.7 no.1
    • /
    • pp.1-9
    • /
    • 2011
  • Storing and transferring heat in soils is governed by the soil thermal properties and these properties are therefore needed in many engineering applications, including horizontal ground heat exchanger for ground-coupled heat pumps. This paper presents the evaluation results of the ground subsurface temperature and apparent thermal diffusivity of soils by using ground temperature data collected at the depths of 0.5 m, 1.0 m, 1.5 m, 3.0 m, and 5.0 m at four sites. The existing correlation assuming that the soil was homogeneous and of constant thermal diffusivity was applied to calculate the subsurface temperature and two analytical equations, amplitude and phase equation, were also used to evaluate the soil apparent thermal diffusivity. Comparison of the estimated and of the measured values of the subsurface temperature has shown that the empirical correlation predicts quite accurately the ground temperature at various depths. Based on the one-dimensional heat conduction equation, the apparent thermal diffusivity can be estimated by the two equations.

Estimation of Soil Surface Temperature by Heat Flux in Soil (Heat flux를 이용한 토양 표면 온도 예측)

  • Hur, Seung-Oh;Kim, Won-Tae;Jung, Kang-Ho;Ha, Sang-Keon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.3
    • /
    • pp.131-135
    • /
    • 2004
  • This study was carried out for the analysis of temperature characteristics on soil surface using soil heat flux which is one of the important parameters forming soil temperature. Soil surface temperature was estimated by using the soil temperature measured at 10 cm soil depth and the soil heat flux measured by flux plate at 5 cm soil depth. There was time lag of two hours between soil temperature and soil heat flux. Temperature changes over time showed a positive correlation with soil heat flux. Soil surface temperature was estimated by the equation using variable separation method for soil surface temperature. Arithmetic mean using temperatures measured at soil surface and 10 cm depth, and soil temperature measured at 5 cm depth were compared for accuracy of the value. To validate the regression model through this comparison, F-validation was used. Usefulness of deductive regression model was admitted because intended F-value was smaller than 0.001 and the determination coefficient was 0.968. It can be concluded that the estimated surface soil temperatures obtained by variable separation method were almost equal to the measured surface soil temperature.

Mechanism on Extraction of Heavy Metals from Soil by Ultrasonication (초음파 조사에 의한 토양내 중금속 추출 기작 연구)

  • Shin, Yeon-Jun;Lee, Cha-Dol;Yoo, Jong-Chan;Yan, Jung-Seok;Kim, Ho-Sub;Baek, Kitae
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.1
    • /
    • pp.28-35
    • /
    • 2015
  • In this study, the mechanisms on ultrasonication enhanced metals extraction were investigated compared with the conventional washing technique. We hypothesized the mechanisms on enhanced extraction of ultrasonication: ultrasonication increased the temperature of soil slurry and decreased average particle size of soil due to breakdown of soil aggregate. Actually, the ultrasonication increased the temperature of soil slurry to $60^{\circ}C$ in this study, and the increase in the temperature enhanced the metal extraction to 15-20% even in the conventional simple mixing. The conventional washing technique decreased average size of soil particles because of breakdown of soil aggregate, and the ultrasonication decreased the size more than that of washing. The breakdown of soil aggregate improved the contact between metals and washing agent, which enhanced the extraction of metals in the ultrasonication. Therefore, we concluded that the main mechanisms of ultrasonication are increase in the temperature and breakdown of the soil aggregate. Finally, the ultrasonicaiton increased the extractability of metals upto 40% compared to conventional washing technique.

Causality between climatic and soil factors on Italian ryegrass yield in paddy field via climate and soil big data

  • Kim, Moonju;Peng, Jing-Lun;Sung, Kyungil
    • Journal of Animal Science and Technology
    • /
    • v.61 no.6
    • /
    • pp.324-332
    • /
    • 2019
  • This study aimed to identify the causality between climatic and soil variables affecting the yield of Italian ryegrass (Lolium multiflorum Lam., IRG) in the paddy field by constructing the pathways via structure equation model. The IRG data (n = 133) was collected from the National Agricultural Cooperative Federation (1992-2013). The climatic variables were accumulated temperature, growing days and precipitation amount from the weather information system of Korea Meteorological Administration, and soil variables were effective soil depth, slope, gravel content and drainage class as soil physical properties from the soil information system of Rural Development Administration. In general, IRG cultivation by the rice-rotation system in paddy field is important and unique in East Asia because it contributes to the increase of income by cultivating IRG during agricultural off-season. As a result, the seasonal effects of accumulated temperature and growing days of autumn and next spring were evident, furthermore, autumnal temperature and spring precipitation indirectly influenced yield through spring temperature. The effect of autumnal temperature, spring temperature, spring precipitation and soil physics factors were 0.62, 0.36, 0.23, and 0.16 in order (p < 0.05). Even though the relationship between soil physical and precipitation was not significant, it does not mean there was no association. Because the soil physical variables were categorical, their effects were weakly reflected even with scale adjustment by jitter transformation. We expected that this study could contribute to increasing IRG yield by presenting the causality of climatic and soil factors and could be extended to various factors.