• 제목/요약/키워드: Soil Stabilized Material

검색결과 34건 처리시간 0.021초

Applications of Air-Foamed Stabilized Soil as Potential Subgrade Material of Railway Track

  • Park, Dae-Wook;Vo, Hai Viet;Lim, Yujin
    • International Journal of Railway
    • /
    • 제7권4호
    • /
    • pp.91-93
    • /
    • 2014
  • In these days, use of proper soils for construction materials become more limited, but wasted soils are abundant; therefore, the method which can use wasted soil such as soft clay has been investigated. Air-foamed stabilized soil has been used widely, but never been used as a subgrade material. The aim of this study is to verify the use of air-foamed stabilized soil as the subgrade construction material. Several wasted soils such as soft clay was selected to make air-foamed stabilized soil mixtures. The air-foamed stabilized mixture design was conducted to find the optimum quantity of stabilizing agent (cement) and air-foamed, and the effect of cement quantity and air-foamed quantity on strength of air-foamed stabilized soil mixtures base on the test results of unconfined compression test was investigated. As the quantity of cement is increased, the strength is increased, but the quantity of air-foamed is increased and the strength is decreased. Elastic moduli based on unconfined compression strength were obtained to use as subgrade of railway track design.

Mechanical properties of stabilized saline soil as road embankment filling material

  • Li Wei;Shouxi Chai;Pei Wang
    • Geomechanics and Engineering
    • /
    • 제37권5호
    • /
    • pp.499-510
    • /
    • 2024
  • In northern China, abundant summer rainfall and a higher water table can weaken the soil due to salt heave, collapsibility, and increased moisture absorption, thus the chlorine saline soil (silty clay) needs to be stabilized prior to use in road embankments. To optimize chlorine saline soil stabilizing programs, unconfined compressive strength tests were conducted on soil treated with five different stabilizers before and after soaking, followed by field compaction test and unconfined compressive strength test on a trial road embankment. In situ testing were performed with the stabilized soils in an expressway embankment, and the results demonstrated that the stabilized soil with lime and SH agent (an organic stabilizer composed of modified polyvinyl alcohol and water) is suitable for road embankments. The appropriate addition ratio of stabilized soil is 10% lime and 0.9% SH agent. SH agent wrapped soil particles, filled soil pores, and generated a silk-like web to improve the moisture stability, strength, and stress-strain performance of stabilized soil.

오염지하수의 확산방지를 위한 대체 혼합차수재의 적용에 관한 연구 (A Feasibility Study on the Deep Soil Mixing Barrier to Control Contaminated Groundwater)

  • 김윤희;임동희;이재영
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제6권3호
    • /
    • pp.53-59
    • /
    • 2001
  • 비위생 매립지를 정비하는 방법은 여러 가지 공법이 있으나, 지중에 투수성이 매우 낮은 물질을 설치하여 폐기물과 오염된 지하수를 가두고 외부지역의 지하수가 유입되는 것을 차단하는 목적으로 심층혼합차수공법 형태의 연직 차수벽이 많이 설치된다. 국내에서 일반적으로 많이 사용되고 있는 심층혼합 차수공법의 차수재료는 특수시멘트 계열의 고화재를 많이 사용하고 있으며, 이때 고화재 투입량은 차수재의 법적 설치기준인 투수계수가 1.0x$10^{7}$cm/sec 이하이어야 하므로 현장토의 여건에 따라 달라지게 된다. 본 연구에서는 흙의 통일분류법상 SW-SC로 분류된 현장토를 대상으로 고화재를 활용한 혼합 차수벽 형성에서의 적정 고화재 투입량 및 최적 함수비를 결정하고 고화재를 개량할 수 있는 물질로서 비산재와 석회를 선정하여 적절한 혼합비로 고화재에 첨가함으로써 혼합 차수재의 기능 향상에 대한 방안을 검토하였다. 연구결과, 심층 혼합 차수공법에서 차수재의 고화재 적정 배합비율은 투수계수 실험을 통하여 13%가 적절한 것으로 나타났으며, 이 때 시공성을 용이하게 하기 위한 배합수비는 고화재 : 물의 비가 1 : 1.5가 적절한 것으로 나타났다. 이와 같이 도출된 기본적인 배합비를 기준으로 비산재와 석회를 첨가한 혼합 차수재의 강도와 투수능을 평가한 결과, 고화재(시멘트) 대신 첨가재(비산재:석회 = 70:30)를 20~40% 정도 첨가하여 사용한다면 고화재만을 사용하는 경우보다 더 낮은 투수능을 보임을 알 수 있었다. 혼합 차수재의 중금속 고정능 평가에서는 고화재(시멘트)만을 혼합할 때와 상응하는 중금속 고정능력이 있었으며, 환경적 위해성 평가를 위한 중금속 용출 실험에서도 용출농도는 규제치 이하임을 알 수 있었다.의 값이 모두 광릉이 높고 남산이 낮은(mesh size 1.7mm>광릉 mesh size 0.4 mm>남산 mesh size 1.7 mm) 일관된 경향을 나타냈다. 이는 날개응애 군집의 종 다양성은 광릉지역이 남산지역에 비해 더 높다는 결론을 도출할 수 있는 것이었다. 낙엽주머니내 출현종의 우점종과 출현빈도 분석결과, 각 조사구의 우점종들은 전체 밀도의 70%이상을 차지하고 있어 비중이 매우 높은 것들로 나타났고, 최고 우점종은 mesh size 1.7mm의 남산과 광릉 조사구에서 Tricho-galumna nipponica로 동일했고, 광릉 mesh size 0.4 mm에서는 이 종보다 크기가 작은 Ramusella sengbuschi가 최고 우점종이었다. 그리고 낙엽주머니내에 밀도와 출현빈도가 높아 낙엽분해에 직,간접적으로 크게 관여하는 날개응애 종들로는 Tricogalumna nipponica, Epidamaeus coreanus, Scheloribates latipes, Ceratozetes japonicus, Ramusella sengbuschi, Eohypochthonius crassisetiger, Cultroribula lata 등을 선발할 수 있었다.X>$_4$$^{2-}$ 및 HCO$_3$$^{-}$ 각각의 관계에 의하면. 남부지역과 서북부지역 얘서 모두 염수의 영향을 받고 있는 것으로 나타난다.worm by topical aprication. 3. There is an increase of cocoon yield in both chemical treatments. It was resulted from increase of weight of

  • PDF

휴믹산 함유량에 따른 유동화 처리토의 공학적 특성 (Engineering Properties of Liquefied Stabilized Soil by Contents of Humic Acid)

  • 한상재;안동욱;박재만;김수삼
    • 대한토목학회논문집
    • /
    • 제29권5C호
    • /
    • pp.229-237
    • /
    • 2009
  • 전통적인 되메우기 방법은 모래 또는 현장발생토를 다짐하는 공법이 주로 사용되어 왔으나 이는 시간과 비용이 많이 든다. 특히 관의 하부 및 작은 틈새와 같은 부분은 전통적인 다짐 공법으로는 다지기가 난해하기 때문에, 이러한 문제점을 보완하기 위해 현장토를 재활용함으로써 모래 수급 문제를 해결하고 배합설계를 통해 유동성 및 강도를 임의로 조절할 수 있는 유동화 처리토 공법이 제안되었다. 본 연구에서는 현장토의 유기물 함유량에 따른 유동화 처리토의 배합 특성을 파악하고자, 휴믹산 함유량에 따른 재료분리특성, 유동성, 강도특성, 투수특성을 실내실험을 통해 측정하여, 비교 분석하였다. 그 결과, 휴믹산 함유량이 증가할수록 재료분리 특성과 유동성은 크게 나타났고, 강도는 유기물 함유량과 반비례하는 것으로 나타났다. 또한 유기물 함유량은 유동화 처리토의 투수특성에는 영향을 미치지 않는다는 것을 알 수 있었다.

순환자원 활용 지반안정재의 건축물 얕은기초 보강 적용사례 연구 (Study on application case of reinforce building shallow foundation for soil stabilized materials using circulating resources)

  • 송상훤
    • 문화기술의 융합
    • /
    • 제8권3호
    • /
    • pp.457-462
    • /
    • 2022
  • 본 연구는 순환자원을 대량 활용한 지반안정재를 활용하여, 비교적 작은 하중이 작용하는 중·저층 건축물의 얕은 기초 보강공법에 적용한 사례에 대한 내용으로 우선하여 현장 최적배합비를 도출하고자 4가지 혼합비에 대한 실내배합시험을 실시하였으며, 도출된 최적배합비를 이용하여 현장에서 건축물 얕은기초로 적용하였다. 현장 적용방법은 원지반와 지반안정재를 교반한 혼합토를 현장에서 혼합하여 다짐을 실시하는 매우 단순한 공정을 이용하였다. 현장 적용 후 평판재하시험을 원지반 1곳, 개량지반 2곳에 실시하여 허용지지력을 확인하였다. 지지력 확인 결과 충분한 지지력을 발휘하는 것으로 나타나, 해당 건축물의 앝은기초로 활용이 가능한 것으로 확인되었다.

Evaluation of extension in service life and layer thickness reduction of stabilized flexible pavement

  • Nagrale, Prashant P.;Patil, Atulya
    • Advances in Computational Design
    • /
    • 제3권2호
    • /
    • pp.201-212
    • /
    • 2018
  • Decrease in availability of suitable subbase and base course materials for highway construction leads to a search for economic method of converting locally available troublesome soil to suitable one for highway construction. Present study insights on evaluation of benefits of stabilization of subgrade soils in term of extension in service life (TBR) and layer thickness reduction (LTR). Laboratory investigation consisting of Atterberg limit, Compaction, California Bearing Ratio, unconfined compressive strength and triaxial shear strength tests were carried out on two types of soil for varying percentages of stabilizers. Vertical compressive strains at the top of unstabilized and stabilized subgrade soils were found out by elastoplastic finite element analysis using commercial software ANSYS. The values of vertical compressive strains at the top of unstabilized and stabilized subgrade, were further used to estimate layer thickness reduction or extension in service life of the pavement due to stabilization. Finite element modeling of the flexible pavement layered structure provides modern technology and sophisticated characterization of materials that can be accommodated in the analysis and enhances the reliability for the prediction of pavement response for improved design methodology. If the pavement section is kept same for unstabilized and stabilized subgrade soils, pavement resting on lime, fly ash and fiber stabilized subgrade soil B will have service life 2.84, 1.84 and 1.67 times than that of unstabilized pavement respectively. The flexible pavement resting on stabilized subgrade is beneficial in reducing the construction material. Actual savings would depend on the option exercised by the designer for reducing the thickness of an individual layer.

Reuse of dredged sediments as pavement materials by cement kiln dust and lime treatment

  • Yoobanpot, Naphol;Jamsawang, Pitthaya;Krairan, Krissakorn;Jongpradist, Pornkasem;Horpibulsuk, Suksun
    • Geomechanics and Engineering
    • /
    • 제15권4호
    • /
    • pp.1005-1016
    • /
    • 2018
  • This paper presents an investigation on the properties of two types of cement kiln dust (CKD)-stabilized dredged sediments, silt and clay with a comparison to hydrated lime stabilization. Unconfined compressive strength (UCS) and California bearing ratio (CBR) tests were conducted to examine the optimal stabilizer content and classify the type of highway material. A strength development model of treated dredged sediments was performed. The influences of various stabilizer types and sediment types on UCS were interpreted with the aid of microstructural observations, including X-ray diffraction and scanning electron microscopy analysis. The results of the tests revealed that 6% of lime by dry weight can be suggested as optimal content for the improvement of clay and silt as selected materials. For CKD-stabilized sediment as soil cement subbase material, the use of 8% CKD was suggested as optimal content for clay, whereas 6% CKD was recommended for silt; the overall CBR value agreed with the UCS test. The reaction products calcium silicate hydrate and ettringite are the controlling mechanisms for the mechanical performance of CKD-stabilized sediments, whereas calcium aluminate hydrate is the control for lime-stabilized sediments. These results will contribute to the use of CKD as a sustainable and novel stabilizer for lime in highway material applications.

소규모 하천 친환경 물흐름을 위한 차수특성 (Waterproof Characteristic for Environmental Water Flows in Small Streams)

  • 박민철;김성구;이송
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회 2차
    • /
    • pp.192-199
    • /
    • 2010
  • This research produced internal model tester ($2.0m{\times}2.0m{\times}1.0m$) to evaluate the field application of Paju Unjeong District water recycling system for small streams eco-friendly river bed disparity method for the first time in Korea and conducted comparative analysis of the Paju Unjeong District water recycling system field test results and infiltration rate result of internal tests by each rainfall intensity following surface material. Infiltration rate result of internal tests concrete pavement by rainfall intensity following surface material, asphalt pavement, bentonite mate, stabilized soil construction and mixed soil construction manifested low infiltration rate. On the contrary, compaction soil, grassland and water permeable packaging materials resulted in significant amount of infiltration rate. As for the field permeability test results, they were manifested similar tendency as indoor permeability test results and they satisfied the standard for standard of water permeability of domestic disparity facility (less than $1.0{\times}10-7cm$/sec). As compaction rate increased, unconfined compression strength increased as well while coefficient of water permeability decreased.

  • PDF

The effect of hydrated lime on the petrography and strength characteristics of Illite clay

  • Rastegarnia, Ahmad;Alizadeh, Seyed Mehdi Seyed;Esfahani, Mohammad Khaleghi;Amini, Omid;Utyuzh, Anatolij Sergeevich
    • Geomechanics and Engineering
    • /
    • 제22권2호
    • /
    • pp.143-152
    • /
    • 2020
  • In this research, soil samples of the Kerman sedimentary basin, Iran, were investigated through laboratory tests such as petrography (Scanning Electron Microscopy (SEM), X-Ray Fluorescence Spectroscopy (XRF) and X-Ray Diffraction (XRD)), physical and mechanical characteristics tests. The soil in this area is dominantly CL. The petrography results showed that the dominant clay mineral is Illite. This soil has made some problems in the earth dams due to the low shear strength. In this study, a set of samples were prepared by adding different amounts of lime. Next, the petrography and strength tests at the optimum moisture content were performed. The results of SEM analysis showed substantial changes in the soil structure after the addition of lime. The primary structure was porous and granular that was changed to a uniform and solid after the lime was added. According to XRD results, dominant mineral in none stabilized soil and stabilized soil are Illite and calcite, respectively. The pozzolanic reaction resulted in the reduction of clay minerals in the stabilized samples and calcite was known as the soil hardener material that led to an increase in soil strength. An increase in the hydrated lime leads to a decrease in their maximum dry unit weight and an increase in their optimum moisture content. Furthermore, increasing the hydrated lime content enhanced the Unconfined Compressive Strength (UCS) and soil's optimum moisture. An increase in the strength is significantly affected by the curing time and hydrated lime contents, as the maximum compressive strength is achieved at 7% hydrated lime. Moreover, the maximum increase in the California Bearing Ratio (CBR) achieved in clay soils mixed with 8% hydrated lime.

Stabilization of oily contaminated clay soils using new materials: Micro and macro structural investigation

  • Ghiyas, Seyed Mohsen Roshan;Bagheripour, Mohammad Hosein
    • Geomechanics and Engineering
    • /
    • 제20권3호
    • /
    • pp.207-220
    • /
    • 2020
  • Clay soils have a big potential to become contaminated with the oil derivatives because they cover a vast area of the earth. The oil derivatives diffusion in the soil lead to soil contamination and changes the physical and mechanical properties of the soil specially clay soils. Soil stabilization by using new material is very important for geotechnical engineers in order to improve the engineering properties of the soil. The main subjects of this research are a- to investigate the effect of the cement and epoxy resin mixtures on the stabilization and on the mechanical parameters as well as the microstructural properties of clay soils contaminated with gasoline and kerosene, b- study on the phenomenon of clay concrete development. Practical engineering indexes such as Unconfined Compressive Strength (UCS), elastic modulus, toughness, elastic and plastic strains are all obtained during the course of experiments and are used to determine the optimum amount of additives (cement and epoxy resin) to reach a practical stabilization method. Microstructural tests were also conducted on the specimens to study the changes in the nature and texture of the soil. Results obtained indicated that by adding epoxy resin to the contaminated soil specimens, the strength and deformational properties are increased from 100 to 1500 times as that of original soils. Further, the UCS of some stabilized specimens reached 40 MPa which exceeded the strength of normal concrete. It is interesting to note that, in contrast to the normal concrete, the strength and deformational properties of such stabilized specimens (including UCS, toughness and strain at failure) are simultaneously increased which further indicate on suitability and applicability of the current stabilization method. It was also observed that increasing cement additive to the soil has negligible effect on the contaminated soils stabilized by epoxy resin. In addition, the epoxy resin showed a very good and satisfactory workability for the weakest and the most sensitive soils contaminated with oil derivatives.