• Title/Summary/Keyword: Soil Restoration

Search Result 798, Processing Time 0.023 seconds

A Study on the Vegetation Properties of Slope Areas according to the Soil Hardness (토양경도에 따른 비탈면 식생 특성에 관한 연구)

  • Kil, Sung-Ho;Lee, Dong-Kun;Ahn, Tong Mahn;Koo, Meehyun;Kim, Te Yon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.15 no.5
    • /
    • pp.115-127
    • /
    • 2012
  • This study was conducted on the measurement of soil hardness through a hardness testing machine in slopes of natural environments and artificial environments which is generally known as slope revegetation. The soil hardness as one of physicochemical soil properties is significantly associated with plant growth. Although another studies related to the slope revegetation was focused on herbaceous plants, studies related to soil properties for arbor appearance is lack. It was focused on the correlation analysis between the soil hardness and the plant appearance. the results were as follows : The higher the soil hardness is, the less the appearance of plants is as a result of survey. Species appearing in the high levels of the soil hardness represented mugwort and grass. The levels of the soil hardness in the slope of natural environments was good environmental conditions with various plants in the range of 6 to 12mm. The levels of the soil hardness in the slope revegetation was in the 6.88-30mm range. The soil hardness below 21mm showed a variety of plants with arbors and herbaceous plants, whereas it above 21mm represented a monotonous style of plant structure including Artemisia princeps, Lolium perenne, Poa pratensis L and Setaria viridis. The result of the correlation analysis between the soil hardness and the plant appearance was negatively correlated with justifiable significance levels. The result of a logistic regression analysis for tree appearance was statistically proved when the numerical value of the soil hardness is lower.

A Study on the Seeding Mixture and Application Test for the Restoration and Revegetation of the Slopes by theThin-Layer-Soil-Media Hydroseeding Measures - Application by the S.O-Soil spray Measures - (얇은 식생기반재 취부공법에 의한 비탈면 녹화 식생배합 및 적용시험 연구 - S.O-Soil spray공법을 중심으로-)

  • Kim, Jung-Wan;Jung, Tea-Geun;Kim, Nam-Choon;Kwon, Byeong-Soung
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.6
    • /
    • pp.143-151
    • /
    • 2006
  • Currently, there are researches about environment-friendly road construction plans led by the Ministry of Construction and Transportation in progress. Therefore, in order to create the revegetation techniques of thin layer-soil combination media hydroseeding measures by actively using native herbs and native woody plants instead of using imported foreign grasses as a concept of sustainable environment-friendly land development, this thesis is going to identify problems that can appear when applying the thin- layer-soil-media hydroseeding measures by the suggested in the "Slope revegetation design and guidelines" proposed by the Ministry of Construction and Transportation, and to propose improvement plans for the problems.To this aim, a seeding mixture selection test was conducted by the goal of slope restoration, and a test group for artificial slope was created. As for a test for June sowing, it was intended to identify appropriate combination quantity by conducting a test that differentiates the combination quantity, and as for a test for September sowing, an artificial slope test was conducted by creating an artificial bank for earth and soil and applying 1~2cm and 3~4cm thickness after differentiating the seed combination volume and slope aspects.

A Study of Germination Characteristics of Native Plants to be Utilized in DMZ Barren Land (불모지 내 활용 가능한 자생식물의 발아특성 연구)

  • Kim, Dong-Hak;Kim, Sang-Jun;Yu, Seung-Bong;Bak, Gippeum
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.4
    • /
    • pp.1-14
    • /
    • 2021
  • This study suggested suitable soil textures that is proper to propagate native plants to manage and restore barren land in DMZ. Germination tests were conducted for 16 native herbaceous plants growing in the DMZ border area in accordance with FAO-BI (Biodiversity International) standards, and the germination rate and T50 in vitro were investigated. In order to examine the germination characteristics according to the soil textures, we used gravel, bed and mixed soil and investigated the germination characteristics under ordinary room temperature conditions in the greenhouse. As a result, it was observed that the germination rate in the greenhouse was significantly decreased compared to the germination rate in vitro of the species advertised due to soil textures. T50 between the in vitro and each soil texture showed significant differences whereas T50 between soil textures alone did not in all species advertised. The germination rate in vitro of Aster koraiensis, Dendranthema zawadskii var. latilobum, Hosta clausa, and Hosta minor there was no significant difference compared to ordinary room temperature conditions. In addition, as the germination rate is demonstrated more than 70%, which is relatively higher than other species advertised, it is considered to have strong environmentally adaptable. On the other hand, considering that the 6 species of Leontopodium coreanum, Plantago major, Potentilla chinensis, Sedum kamtschaticum, Sedum latiovalifolium, and Veronica kiusiana demonstrated less than 50% of germination rate in vitro, it is expected to be difficult to propagate without pre-treatment. In order to use these 6 species as restoration material plants, it needs to be considered to pre-treat to improve germination rate, or to enhance the vitality of seeds by improving the seed gathering period and storage method.

Effects of cultivation ages and modes on microbial diversity in the rhizosphere soil of Panax ginseng

  • Xiao, Chunping;Yang, Limin;Zhang, Lianxue;Liu, Cuijing;Han, Mei
    • Journal of Ginseng Research
    • /
    • v.40 no.1
    • /
    • pp.28-37
    • /
    • 2016
  • Background: Panax ginseng cannot be cultivated on the same land consecutively for an extended period, and the underlying mechanism regarding microorganisms is still being explored. Methods: Polymerase chain reaction and denaturing gradient gel electrophoresis (PCR-DGGE) and BIO-LOG methods were used to evaluate the microbial genetic and functional diversity associated with the P. ginseng rhizosphere soil in various cultivation ages and modes. Results: The analysis of microbial diversity using PCR-DGGE showed that microbial communities were significantly variable in composition, of which six bacterial phyla and seven fungal classes were detected in P. ginseng soil. Among them, Proteobacteria and Hypocreales dominated. Fusarium oxysporum, a soilborne pathogen, was found in all P. ginseng soil samples except R0. The results from functional diversity suggested that the microbial metabolic diversity of fallow soil abandoned in 2003was the maximum and transplanted soil was higher than direct-seeding soil and the forest soil uncultivated P. ginseng, whereas the increase in cultivation ages in the same mode led to decreases in microbial diversity in P. ginseng soil. Carbohydrates, amino acids, and polymers were the main carbon sources utilized. Furthermore, the microbial diversity index and multivariate comparisons indicated that the augmentation of P. ginseng cultivation ages resulted in decreased bacterial diversity and increased fungal diversity, whereas microbial diversity was improved strikingly in transplanted soil and fallow soil abandoned for at least one decade. Conclusion: The key factors for discontinuous P. ginseng cultivation were the lack of balance in rhizosphere microbial communities and the outbreak of soilborne diseases caused by the accumulation of its root exudates.

A Study on the Possibility of Plant Introduction Using Soil Neutralization in the Abandoned Mine Waste Areas (광산폐석지에 토양 중화를 이용한 식물도입 가능성에 관한 연구)

  • Jung, Byoung-Hak
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.27 no.4
    • /
    • pp.29-43
    • /
    • 2024
  • The purpose of this study was to analyze the soil on two waste areas that lack plants to find out the limiting factors of plant introduction, and to find out the possibility of plant introduction through plant growth experiments by mixing the two waste soil. In the case of tungsten waste soil, insufficient organic matter, water content, effective phosphoric acid, and nitrogen content were the limiting factors for plant introduction, and in the case of coal waste soil, low pH of the soil acted as the limiting factors for natural introduction. Growth experiments showed that the number of leaves of Ipomoea nil grown in soil mixed with both waste soil was 2.7 times greater than that of Ipomoea nil grown in tungsten waste soil, and 2.29 times greater than that of Ipomoea nil grown in coal waste soil. The fresh weight comparison showed that Ipomoea nil grown in soil mixed with the two waste soil had a fresh weight of 2.64 times higher than that of tungsten waste soil and 2.45 times higher than that of coal waste soil. There was no significant difference in the fresh weight of Ipomoea nil grown in soil mixed with the two waste soil and in general soil. Therefore, when the two waste soil are mixed, it can be judged that the components unfavorable to growth complement each other, improving the soil and being effective in plant growth.

Effects of Soil Organic Amendment as Plant Growing Media Component for Restoration of Planting Ground (식재기반 복원을 위한 유기질계 토양개량재의 효용성)

  • Ju, Jin-Hee;In, Da-Young;Kim, Won-Tae;Yoon, Young-Han;Choi, Eun-Young
    • Journal of Environmental Science International
    • /
    • v.24 no.11
    • /
    • pp.1363-1370
    • /
    • 2015
  • This study was aimed to determine effects of soil organic amendment as plant growing media component on restoration of planting ground. The changes of soil physical and chemical properties and germination and growth of kentucky bluegrass (Poa pratensis L.) were investigated. For treatments, soil was excavated at depth of 0-50 cm (referred as $S_1$) and at depth of 50-100 cm (referred as $S_2$). Then the half amount of $S_1$ soil was mixed with the soil organic amendment (coir dust 40% (v/v), bottom ash 25%, leaf mold 25%, vermiculite 5%, carbonized rice hull 5%) at a rate of 6% (v/v) (referred as $S_1CC$) and also the half amount of $S_2$ soil was mixed with the soil organic amendment at a rate of 6% (v/v) (referred as $S_2CC$) on pot in a 16 cm diameter and 14 cm height. The experiment was replicated 3 times with 3 pots per replication in randomized block design, and 100 seeds were planted per pot. In results, there was no significant difference in soil pH among the treatments with a slight decrease in soil hydraulic conductivity. However, in the $S_1CC$ treatment, positive increases in soil chemical properties, including electrical conductivity, organic matter, phosphoric acid, total nitrogen, exchangeable cation, and cation exchange capacity. Also, the germination rate, plant height, and number of leaves were higher in the $S_1CC$ treatment than those in other treatments. These results suggest that the addition of organic amendment to the soil at depth of 0-50 cm might be proper for restoring planting ground.

Slaking and Particle-Separation Characteristics of the Organic Fine Soil in Paddy Fields (전답용 유기질 세립토의 슬레이킹 내구성 및 분쇄 특성)

  • Cho, Sung-Min
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.3
    • /
    • pp.1-8
    • /
    • 2002
  • Clayey paddy soils should be mixed with other good coarse soils to be used as a material for the lining, or, embankment. However, it has been difficult to separate soil particles from each other because of the internal cohesion in the soil gradation(separation) characteristics of the fine soil were investigated by various laboratory tests including the slaking durability test. Degradation rate of the soil were dependent upon the clay content and the initial water content before the submergence. The amount of degradations decreased as initial water content increased with exponential functions. The dried specimens separated into the particles after 24 hours of the submergence and specimens which water contents were less than 10% also separated into the particles after 2, or 3 days of the submergence. Compaction curves and the unconfined strength were not varied before and after the submergence. However, unconfined strength decreased as water content increased.

Comparative Analyses for the Properties of Surface Soils from Various Land Uses in an Urban Watershed and Implication for Soil Conservation (도시 유역 내에서 토지이용에 따른 표토의 특성 비교 및 표토 보전을 위한 시사점)

  • Park, Eun-Jin;Kang, Kyu-Yi
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.12 no.3
    • /
    • pp.106-115
    • /
    • 2009
  • Knowledge about how to stabilize soil structure is essential to conserve soil systems and maintain various biogeochemical processes through soil. In urban area, soil structural systems are degraded with inappropriate management and land use and become vulnerable to erosion. We analyzed the structural changes of surface soils with different land uses, i.e., forests, parks, roadside green area, riparian area, and farmlands (soybean fields), in the Anyang Stream Watershed in order to find the factors influencing the stability of soil structure and the implication for better management of surface soil. Soil organic matter contents of other land use soils were only 18~52% of that in forest soils. Soil organic matter increased the stability of soil aggregates in the order of soybean fields < roadsides < riparian < parks < forests and also reduced soil bulk density (increased porosity). The lowest stability of soybean field soils was attributed to the often disturbance like tillage and it was considered that higher stability of park soils comparing to other land use soils except forests was owing to the covering of soil surface with grass. These results suggest that supply of soil organic matter and protection of soil surface with covering materials are very important to increase porosity and stability of soil structure.

A Study for Characteristics of Geofiber Reinforced Soil System Practiced on Stone Gabion Bank of River (하천 돌망태 호안에 적용된 토목섬유보강토공법의 녹화 특성)

  • Jeong, Dae-Young;Kim, Jae-Hwan;Shim, Sang-Ryul
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.11 no.6
    • /
    • pp.81-90
    • /
    • 2008
  • Recently, geofiber(polyester) reinforced soil was added on soil-seed mixture spray to control erosion and to improve vegetation growth on rocky slope sites. This research was conducted to compare vegetation effects and soil hardness on three types of soil-seed mixture spray on stone gabion river bank [A type : soil-seed mixture spray underlying 30cm thick sand with geofiber(geofiber reinforced soil system), B type : soil-seed mixture spray underlying 30cm thick sand without geofiber, C type : soil-seed mixture spray]. Evaluation were made concerning vegetation coverage, soil hardness and moisture content. The results of this study showed that A type system was effective for the growth of vegetation and soil hardness when compareed to B type and C type. A type and B type showed higher covering rate than C type on stone gabion river bank, and especially A type showed the highest covering rate. Soil hardness and water content were high on A type vegetation system compared to B type and C type. We noted that high soil hardness and high moisture content with geofiber(geofiber reinforced soil system) were effective both to control erosion from water current impact and to be high coverage and species of vegetation on stone gabion river bank.

Pine Forest Soil Characteristics and Major Soil Impact Factors for Natural Regeneration

  • Kim, Min-Suk;Kim, Yong-Suk;Min, Hyun-Gi;Kim, Jeong-Gyu;Koo, Namin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.3
    • /
    • pp.179-186
    • /
    • 2017
  • This study was conducted to identify characteristics of domestic pine forest soils and to elucidate major soil influencing factors for natural regeneration. We analyzed the physico-chemical characteristics of the soil samples collected from 23 pine forests and confirmed the similar results with the forest soil characteristics. Soil pH, organic matter content, total nitrogen, exchangeable Ca, silt content, and exchangeable Al were selected as the major soil factors among the exposed soils through 10 days of pine seedlings exposure and cultivation experiments and statistical analysis. Multiple regression analysis showed that soil pH had a positive effect on specific root length (SRL) of red pine seedlings and exchangeable Al was a significant factor affecting negative change in SRL. Taken together, the reduction of exchangeable Al by soil pH adjustment would be helpful for natural regeneration by restoring the forest and improving the fine root and root integrity of pine seedlings. Therefore, soil pH and exchangeable Al could be recommended as a major soil factor to be carefully considered in the monitoring and management of soil in pine forests that need to be renewed in the future.