DOI QR코드

DOI QR Code

A Study on the Possibility of Plant Introduction Using Soil Neutralization in the Abandoned Mine Waste Areas

광산폐석지에 토양 중화를 이용한 식물도입 가능성에 관한 연구

  • Received : 2024.07.04
  • Accepted : 2024.08.05
  • Published : 2024.08.30

Abstract

The purpose of this study was to analyze the soil on two waste areas that lack plants to find out the limiting factors of plant introduction, and to find out the possibility of plant introduction through plant growth experiments by mixing the two waste soil. In the case of tungsten waste soil, insufficient organic matter, water content, effective phosphoric acid, and nitrogen content were the limiting factors for plant introduction, and in the case of coal waste soil, low pH of the soil acted as the limiting factors for natural introduction. Growth experiments showed that the number of leaves of Ipomoea nil grown in soil mixed with both waste soil was 2.7 times greater than that of Ipomoea nil grown in tungsten waste soil, and 2.29 times greater than that of Ipomoea nil grown in coal waste soil. The fresh weight comparison showed that Ipomoea nil grown in soil mixed with the two waste soil had a fresh weight of 2.64 times higher than that of tungsten waste soil and 2.45 times higher than that of coal waste soil. There was no significant difference in the fresh weight of Ipomoea nil grown in soil mixed with the two waste soil and in general soil. Therefore, when the two waste soil are mixed, it can be judged that the components unfavorable to growth complement each other, improving the soil and being effective in plant growth.

Keywords

References

  1. Choi, N. W., Mun, K. J., Yoon, S. J., Soh, Y. S. 2004. Polyester mortars with fine tailing as filler, In: Proceeding of RILEM international symposium-ECM2004, Nihon University, Koriyama, Japan, pp. 439-436.
  2. Hossner, L. R., Hons, F. M. 1992. Reclamation of mine tailings. Advances in Soil Science. 17, 311-350.
  3. Li, R. S., Daniels, W. L. 1994. Nitrogen accumulation and form over time in young mine soils . J. Environ. Qual. 23 : 166- 172.
  4. Jun, S. H., Park, K. O., Choi, N. H., Yoon, B. S., Jung, B. H. 2011. Use mycorrhizae for vegetation and restoration of the abandoned mine waste areas. Korean Journal of Nature Consrervation. 5(1), pp. 38-47.
  5. Jun, S. H., Jung, B. H., Park, K. O. 2011. The sewage sludge recycling plan for vegetation restoration in the abandoned mine waste areas. Journal of the Korean Society for Waste Resource Circulation. 28(4), pp. 349-357.
  6. Ministry of Environment, 2006. Soil pollution process test method. Journal of the Korean Society of Environmental Restoration Technology. Vol.14, No.6, pp.71-85.
  7. Ministry of Environment. 2002. A joint investigation into soil contamination at abandoned metal mines.
  8. Heo, S. H. 2008. Phytoremediation for the Removal of Heavy Metals in Abandoned Mine soil, Master's thesis at Konkuk University.
  9. Ok, Y. S., S. H. Kim, D. Y. Kim, H. Lee, S. Lim, and J. G. Kim, 2003, Feasibility of phytoremediation for metal-contaminated abandoned mining area, Korean J. Soil Sci. Fert. 36:323-332.
  10. Raskin, I., Ensley, B. D. 2000. Phytoremediation of Toxic Metals. John Wiley & Sons, Inc. New York. p.3-11, p.193-229.
  11. Jun, S. H., Lee, J. K., Park, K. O., Choi, N. H., Hong, S. W., Jung, B. H. 2011. A study on management of vegetation restoration in abandoned coal-mine waste areas by phytoremediation. Journal of the Korean Society of Environmental Restoration Technology. Vol.14, No.6, pp.71-85.
  12. Park, M. E., Ryu, S. N., Lee, H. W., Kim, C. G., Lee, N. S., Kwon, S. W. 2009. Core organic farming act, Dongguk culture.
  13. Ministry of Environment, 2005. A joint investigation into soil contamination at abandoned metal mines.
  14. Jun, S. H., Park, O. K., Kim, H. Y., Jung, B. H. 2009. Recycling of tailings by soilidifications from abondoned metal mine. Korean Journal of Nature Consrervation. 3(1), pp. 45-52.
  15. Hobbs, R. J., Streit, B. 1985. Heavy metal concentrations in plants growing on a copper mine spoil in the Grand Canyon, Arizona. American Midland Naturalist 115:22, 277-281.
  16. Malki, M., Gonzalez-Toril, E., Sanz, J., Gomez, F., Rodriguez N., Amils, R. 2006. Importance of the Iron Cycle in Biohydrometallurgy, Hydrometallurgy, Vol. 83, Issue 1-4, pp. 223-228.
  17. Lee, S. W., Kim, M. J., Park, S. H., Lee, S. H., Kim, S. O. 2015. Human risk assessment of arsenic and heavy metal contamination and estimation of remediation concentration within abondoned metal mine area, J. Miner. Soc. Korea. 28(4), 309-323.
  18. Kwon, H. J., Lee, C. H., Kim, S. Y. 2019. Heavy Metals Uptake Capability and Growth of Fifteen Compositae Plants for Phytoremediation. The Plant Resources Society of Korea. Vol. 32., No. 1, pp. 1-8.
  19. Cho, J. S., Ju, Y. K., Chang, Y. D., Lee, C. H. 2010. Screening of useful plants for lead phytoremediation in upland soil contaminated with heavy metals. the plant resources society of korea. pp. 113-113.
  20. Jeong, S. K., Kim, T. S., Moon, H. S. 2010. Characteristics of heavy metals uptake by plants: based on plant species, types of heavy metals, and initial metal concentration in soil. Journal of soil and groundwater environment. 15(3), pp. 61-68.
  21. Seo, D. S., Yun, S. I., Lee, C. K. 2018. Stabilization of heavy metals and growth of Pinus densiflora in and abandoned mine tailing with compost and lime amendment. Korean Journal of Soil Science and Fertilizer. Abstract of Spring Conference. pp. 108.
  22. Kim, J. J. 2009. Evaluation of remediation potential in arsenic contaminated soil using Equisetum arvense L.(Master thesis), Kangwon National University.
  23. Koo, S. Y., Cho, K. S. 2006. Interaction between plants and rhizobacteria in phytoremediation of heavy metal contaminated soil. korean journal of microbiology and biotechnology. 34(2), pp. 83-93.