• Title/Summary/Keyword: Soil Pollution Indices

Search Result 36, Processing Time 0.025 seconds

Quality of Korean Soil and It's Prospection Influenced with Heavy Metals and Arsenic Analyzed with Soil Pollution Indices (토양오염지표에 의한 국내 토양의 중금속과 비소 오염도 및 향후 전망)

  • 박용하;윤정호;이승희;김강석
    • Journal of Korea Soil Environment Society
    • /
    • v.1 no.1
    • /
    • pp.55-65
    • /
    • 1996
  • Soil quality of most of Soil Network area was estimated healthy by employing Soil Pollution Indices (Soil Pollution Score and Soil Pollution Class). However, 1.5∼3.7% of the total Soil Network area was determined Soil Pollution Class (SPC) 4 which may need cleanup process due to slight or heavy pollution with arsenics and heavy metals. Numbers of the SPC 4 sites were 9, 47, 19, 17, and 17 in 1987, 1989, 1991, 1993, and 1994, respectively During 1987 and 1994, all of SPC 4 sites were identified agricultural land except one in 1994. Soil Pollution Scores (SPSs) was determined high around smelters, metalliferous mines, and industrial sites among the 16 major soil pollution sources of the Soil Network. Also, most area of SPC 4 sites were densely populated in these area of the Soil Network. SPSs of Inchon and Taegu were high among the other major cities and provinces in Korea. Numbers of SPC 4 were high in the province of Kangwon, Kyongbuk, Kyongnam amongst. Cumulative numbers of SPC 4 multiplied by a weighting value 0.3 during 1987 and 1994 of the Soil Network were regressed to develop a model equation for prospecting the soil quality. The model equation was Y= 1.16+0.23x, where as Y is the number of Class 4 and x is the year. Resulting the area of SPC 4 were 4.8%, 6.0%, 6.6% of the Soil Network in the year of 2001, 2006, 2011, respectively Based on this results, the area of SPC 4 would increase 5, 7, and 10 times comparing the area polluted with heavy metals in 1987.

  • PDF

Evaluation of the Concentration Distribution and the Contamination Influences for Beryllium, Cobalt, Thallium and Vanadium in Soil Around the Contaminated Sources (오염원 인근 토양 중 베릴륨(Be), 코발트(Co), 탈륨(Tl), 바나듐(V)의 농도분포 및 오염영향 평가)

  • Lee, Hong-gil;Noh, Hoe-Jung;Yoon, Jeong Ki;Lim, Jong-hwan;Lim, Ga-Hee;Kim, HyunKoo;Kim, Ji-in
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.4
    • /
    • pp.48-59
    • /
    • 2018
  • Beryllium (Be), cobalt (Co), thallium (Tl) and vanadium (V) are candidates of 21 priority soil pollutants in Korea. The distribution of their concentration in soils from three contamination sources including industrial, roadside and mining areas was investigated. Concentrations of the metals were evaluated quantitatively using pollution indices and the fractionation of metals was conducted using modified SM&T (Standards Measurements and Testing programme) sequential extraction. Concentrations of the metals for all samples from industrial and roadside soils were within the range of natural background levels, while some of Be in soils from abandoned mines exceeded that the range. Enrichment Factor (EF) and Nemerow Integrated Pollution Index (NIPI) for Be, Co, Tl and V showed that there are effects or possibilities of anthropogenic activities. Pollution Load Index (PLI) analyses indicated all investigated sites needed further monitoring. The results of sequential extractions indicated mobile fractions (F1+F2) of Be, Tl and V were below 30% except some of Co in soil, which implies their low mobility to neighboring environment media. Variable tools like sequential extraction, comparison with background/actual concentration and pollution indices, as well as aqua regia extraction should be considered when evaluating Be, Co, Tl, V in soil.

Designing and Applicability of Soil Pollution Indices for Estimating Quality of Soil Polluted with Heavy Metals and Arsenic (중금속 및 비소오염 토양질 평가를 위한 토양오염지표의 고안과 응용 가능성)

  • 박용하
    • Journal of Korea Soil Environment Society
    • /
    • v.1 no.1
    • /
    • pp.47-54
    • /
    • 1996
  • Soil pollution indices (SPI) were designed for estimating quality of soil polluted with arsenic and heavy metals. Applying the quality reference value of soil based on its multifunctional purpose was a key step. For considereing multifunctions of soil, soil was classified into 4 groups-agricultural land, residential area, recreational area, factorial site. Then, each concentration of arsenic and each of five heavy metals (Cd, Cu, Hg, Pb, Zn) in soils grouped was transformed to a mathematical value based on the soil quality reference value which may stand for ecological impact. Soil pollution score (SPS) was the addition of the 6 values transformed, and the range of the SPS was divided into 4 Soil Pollution Classes (SPC). The SPC 1, 2, 3, and 4 were SPS <100, SPS 100-200, SPS >200-300, and SPS >300, repectively. SPS and SPC were evaluated with the results of the data from employing the Soil Network of 1994. Based on the soil quality reference values, SPS and SPC of the Soil Network's data were transformed and classified, respectively. Then, SPS and SPC were compared with arsenic and the 5 heavy metal contents of their reference values resulted from the Soil Network's. From this method, soil quality of most of the Soil Network area was estimated to be healthy. However, ca. 3.0~4.0% of the Soil Network area was determined in a range of slightly and heavily polluted. As the mean value of SPS of the Soil Network's was 66.2 which indicates most of soil evaluated was healthy. When the SPSs of the data were divided into 4 groups of SPC, Class 1 (Good quality of soil), Class 2 (Need to be checked area 1), Class 3 (Need to be checked area 2) and Class 4 (Polluted area) were 87.0, 9.4, 2.4, 1.2%, respectively. Using SPI were comparable to those of heavy metal contents in soils, and would be comprehenve to determine the status of soil qulity. Methodology of the developing SPI would be applicable to the other soil pollutants such as organic and inorganics than arsenic and 5 heavy metals used here.

  • PDF

Assessment of Heavy Metal(loid)s Pollution in Arable Soils near Industrial Complex in Gyeongsang Provinces of South Korea

  • Kim, Yong Gyun;Lee, Hyun Ho;Park, Hye Jin;Hong, Chang Oh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.51 no.2
    • /
    • pp.128-141
    • /
    • 2018
  • Industrial complex releasing huge amounts of dusts, fumes and wastewater containing heavy metal(loid)s could be a source of heavy metal(loid)s pollution in arable soil. Heavy metal(loid)s pollution in arable soil adversely affect crops safety, subsequently human being. Hence, it is important to accurately assess the heavy metal(loid)s pollution in soil using pollution indices. The objectives of this study are 1) to compare assessment methods of heavy metal(loid)s pollution in arable soils located near industrial complex in Gyeongsang provinces and 2) to determine the relationship between concentration of plant available heavy metal(loid)s and chemical properties of soil. Soil samples were collected from 85 sites of arable lands nearby 10 industrial complex in Gyeongsang provinces. The average total concentration of all heavy metal(loid)s of the studied soils was higher than that of Korean arable soils but did not exceed the warning criteria established by the Soil Environmental Conservation Act of Korea. Only six sites of arable soils for the total concentration of As, Cu and Ni exceeded the warning criteria (As: $25mg\;kg^{-1}$, Cu: $150mg\;kg^{-1}$, Ni: $100mg\;kg^{-1}$). The contamination factor (CF) and geoaccumulation index ($I_{geo}$) of the heavy metal(loid)s in arable soils varied among the sampling sites, and the average values of As and Cd were relatively higher than that of other metals. Results of integrated indices of As and Cd in arable soils located near industrial complex indicated that some arable soils were moderately or heavily polluted. The plant available concentration of heavy metal(loid)s was negatively related to the soil pH and negative charge of soil. Available Cd, Pb, and Zn concentrations had relatively high correlation coefficient with pH and negative charge of soil when compared with other heavy metal(loid)s. Based on the above results, it might be a good soil management to control pH with soil amendments such as lime and compost to reduce phytoavailability of heavy metal(loid)s in arable soil located near industrial complex.

Analysis of the Ecological Characteristics of Vegetation in the Area Adjacent to Sasang Industrial Complex in Pusan Metropolitan City (사상공단 주변 식생의 생태적 특성 분석)

  • 박승범;김석규;남정칠;김승환;강영조;이기철
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.30 no.1
    • /
    • pp.75-86
    • /
    • 2002
  • This study was conducted to analyze the change of soil characteristics effect on the condition of urban forest in Sasang parti located near Sasang Industrial Complex. The results of this study are as follows; 1. Soil hardness is increasing from the area of forest, to the entrance, to facilities in that order. Soil acidity pH4.19∼4.23 in Sasang park indicated a high acidity condition. High levers of K, Na, Mg, Ca are shown in the areas composed of high soil hardness. 2. Pinus thunbergii in the overstory tree layer, Alnus japonica in the understory tree layer, and Rhus sylvestris in the shurb layer are shown respectively as dominant species based on the ground survey and the compution of important value. Pinus thunbergii is decreasing, while Alnus japonica and increasing. 3. Oplismenus undulatifolius which has a strong tolerance for air pollution, is shown as a dominant species of herbaceous plants in Sasang park. There are 10 species of Harbaceous in Sasang park compared to 20 species in Molundae park. This shows that deversity in herbaceous plants are imported by air pollution. 4. Species diversity indices of Sasang park is 0.8738∼0.9700 compared to 1.0817∼ 1.233 in Molundae park is due to the good condition of soil environment in addition to air pollution effects. 5. The vitality of Pinus thunbergii is 16.41∼20.42ER in Sasang park, and 12.42∼ 16.81ER, in Molundae park. This shows that tree vitality are impacted by soil characteristics. The regression analysis between tree vitality and soil environment shows the effects of is soil hardness, soil moisture, soil acidity, K, Na, Mg, Ca.

Assessment of Pollution Level and Contamination Status on Mine Tailings and Soil in the Vicinity of Disused Metal Mines in Kangwon Province (강원도 폐금속광산지역의 광미와 주변토양의 중금속 오염현황 및 오염도 평가)

  • Kim, Joung-Dae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.6
    • /
    • pp.626-634
    • /
    • 2005
  • The objectives of this study was to assess pollution level and contamination status on tailings and soil in the vicinity of four disused metal mines in Kangwon province. As the result of total metal concentrations analysis, the pollution degree of tailings and soil decreased in the order of Wondong > Second Yeonhwa > Sinyemi ${\fallingdotseq}$ Sangdong mines. Total metal concentrations of mine tailings in this study were $1.2{\sim}78.2$ and $1.1{\sim}80.6$ times higher than those in the background soil and the tolerable levels suggested by Kloke, respectively. From these results, we found that tailings served as contamination source of nearby soil. According to sequential extraction of metals, large proportion of heavy metals in all mine tailings existed in the form of a residual fraction, and heavy metals in non-residual form was mainly associated with Fe-Mn oxide fraction and sulfidic-organic fraction. Fe-Mn oxide fraction and sulfidic-organic fraction of heavy metals may be released into and contaminated the nearby environment under the oxidation or reduction condition in long-term. In particular, the proportions of the exchangeable and carbonate fraction of Cd in mine tailings from Second Yeonhwa mine were relatively high. This suggests that Cd may be easily released into and contaminated the nearby environment in the near time. Concentrations of heavy metals in mine tailings and the nearby soil exceeded the standard (agricultural area) of Soil Environment Conservation Law. So it was thought that remediation for mine tailings and the nearby soil is needed. The pollution indices of the samples in this study were for higher than 1.0 and the pollution degree was very serious. Priority remediation site for these mines was Wondong. As Results of danger indices, it was showed that exchangeable form in Wondong and Fe-Mn oxide form in the rest mines should be removed preferentially.

Pollution Level of Heavy Metals of Asian Dust in Daejeon Area, 2008 (2008년 대전지역에서 발생한 황사의 중금속 오염도)

  • Lee, Pyeong-Koo;Bae, Beob-Geun
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.1
    • /
    • pp.8-25
    • /
    • 2014
  • The aims of this study were to determine concentrations of selected metals in Asian and non-Asian dust collected in Daejeon, Korea between February 2008 and December 2008 and to estimate the pollution level. The geochemical analyses of Asian dust (AD) and Non Asian dust (NAD) show that the mean concentrations of As, Cd, Cu, Pb, Zn, Zr, Sb, Mo and S reached levels up to 16, 209, 31, 43, 81, 28, 31, 122 and 302 times higher, respectively, than those in uncontaminated Chinese desert soils. These results indicate that both AD and NAD serve as an atmospheric repository for trace and heavymetal accumulation. The the enrichment factor (EF) and pollution index (PI) show that AD and NAD were severely contaminated by S, Mo, Zr, Cd, Pb, Zn, Sb, Cu, and As. All indices for these metals showed either strong or notably high level of pollution relative to Chinese desert soil, principally due to the severe atmospheric pollution derived from anthropogenic activities in heavily industrial Chinese cities. Therefore, Mo, Cd, Zr, As, Cu, Sb, Pb, and Zn are the ones most strongly affected by anthropogenic inputs such as airborne pollutants.

The impact of municipal waste disposal of heavy metals on environmental pollution: A case study for Tonekabon, Iran

  • Azizpour, Aziz;Azarafza, Mohammad;Akgun, Haluk
    • Advances in environmental research
    • /
    • v.9 no.3
    • /
    • pp.175-189
    • /
    • 2020
  • Municipal solid waste disposal is considered as one of the most important risks for environmental contamination which necessitates the development of strategies to reduce destructive consequences on the ecosystem as related especially to heavy metal accumulation. This study investigates heavy metal (i.e., As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn) accumulation in the Tonekabon region, NW of Iran that is related to city waste disposal and evaluates the environmental impact in the Caspian Sea coastal region. For this purpose, after performing field studies and collecting 50 soil specimens from 5 sites of the study area, geochemical tests (i.e., inductively coupled plasma mass spectrometry, atomic absorption spectroscopy and x-ray fluorescence) were conducted on the soil specimens collected from the 5 sites (named as Sites A1, A2, A3, A4 and A5) and the results were used to estimate the pollution indices (i.e., geo-accumulation index, normalized enrichment factor, contamination factor, and pollution load index). The obtained indices were utilized to assess the eco-toxicological risk level in the landfill site which indicated that the city has been severely contaminated by Cu, Mn, Ni, Pb and Zn. These levels have been developed along the stream towards the nearshore areas indicating uptake of soil degradation. The heavy metal contamination was classified to range from unpolluted to highly polluted, which indicated serious heavy metal pollution in the study area as related to municipal solid waste disposal in Tonekabon.

Analysis of mine tailings, field soils, and paddy soils around Jingok abandoned mine (진곡광산 광미와 주변 토양의 오염조사)

  • 김선태;윤양희;박제안;심의섭
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.2
    • /
    • pp.175-183
    • /
    • 1999
  • Mine tailings, field soils, and paddy soils around Jingok abandoned mine were analyzed In order to investigate their pollution levels of heavy metals and cyanide. The average contents of As, Cd, Cu. Hg. Pb, Zn, and CN ̄in mine tailings were 3.94$\times$$10^3$, 14.3, 266, 6.13, 4.07$\times$$10^3$, 2.51$\times$$10^3$, and 1.19mg/kg, respectively. The pollution indices calculated by the tolerance level of Kloke were 32~58 and the pH values were slightly acidic in mine tailings. In the field and paddy soils of Jingok abandoned mine area except for soils nearby mine tailings, concentrations of the heavy metals were less than standards of soil pollution of agricultural area in the environmental protection law.

  • PDF

Priority Assessment for Remediation of Heavy Metals Closed/Abandoned Mine Areas Using Pollution Indexes

  • Kim Hee-Joung;Yang Jae-E.;Park Byung-Kil;Kong Sung-Ho;Lee Jai-Young;Jun Sang-Ho
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.183-193
    • /
    • 2006
  • Several metalliferous and coal mines, including Seojin and Okdong located at the Kangwon province, were abandoned or closed since 1989 due to the mining industry promotion policy and thus disposed an enormous amount of mining wastes without a proper treatment facilities, resulting in water and soil pollution in the downstream areas. However, no quantitative assessment was made on soil and water pollution by the transport of mining wastes such as acid mine drainage, mine tailing, and rocky waste. In this research, total and fractional concentrations of heavy metals in mining wastes were analyzed and accordingly the degree of water and soil pollutions in the stream area were quantitatively assessed employing the several pollution indices. Concentrations of Ni, Cd, and Pb in soils near the abandoned coal mine areas were 1,240.0, 25.0 and 1,093.0 mg/kg, respectively, and these concentrations were higher than those in soils near the closed metalliferous mine areas. Also Cu concentrations in soils near the tailing dams were about 1967 mg/kg, which is considered as very polluted level. Results demonstrated that soil at the abandoned mine areas were highly contaminated by AMO, tailing, and effluents of the mining wastes. Therefore, a prompt countermeasure on the mining waste treatment and remediation of the codntaminated water and soil should be made to the abandoned or closed metalliferous and coal mines located at the abandoned mine area.

  • PDF