• Title/Summary/Keyword: Soil Particles

Search Result 672, Processing Time 0.028 seconds

Analysis of Trench Slope Stability in Permafrost Regions According to the Vertical and Horizontal Angle of Slope (동토지반에서 종방향 및 횡방향 사면의 경사에 따른 트렌치 안전성 분석)

  • Kim, Jong-Uk;Kim, Jung-Joo;Jafri, Turab H.;Yoo, Han-Kyu
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.1
    • /
    • pp.27-33
    • /
    • 2017
  • In this study, the stability of trench slope was analysed in summer and winter seasons for the construction of pipelines in permafrost regions. The construction standards of Korea, Russia and UK were compared for obtaining an optimum trench shape for a pipeline of 30 in. diameter. Using the geotechnical properties of soil in Yakutsk (Russia), the stability of trench slope was analysed using Strength Reduction Method (SRM) according to the horizontal slope angle values of $0^{\circ}$, $10^{\circ}$, $20^{\circ}$ and $30^{\circ}$ and vertical slope angle values of $20^{\circ}$, $30^{\circ}$ and $40^{\circ}$. In both seasons, an increase in the slope angle results in a decrease in the factor of safety. The results show that horizontal slope angle of $30^{\circ}$ was not safe in summer season. At the vertical slope angle of $20^{\circ}$, trench side failure was observed, whereas, ground slope failure was observed at the vertical slope angles of $30^{\circ}$ and $40^{\circ}$. Due to the solidification of pore water at temperatures below $0^{\circ}C$, cementation of soil particles take place. Therefore, the trench slope was found to be stable in the winter season at all vertical and horizontal slop angles, except for special load cases and abrupt temperature changes.

Environmental Geological Characteristics of Suspended Matter and Turbidity Water at Gachang Dam in 2004 (2004년 가창댐 탁수의 원인과 부유물질의 환경지질학적 특징)

  • Choo Chang-Oh;Koh Eun-Young;Oh Soo-Jiu;Lee Seong-Woo;Kim Byoung-Ki;Lee Ji-Eun;Kim Yeong-Kyoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.1 s.47
    • /
    • pp.49-61
    • /
    • 2006
  • This study was undertaken to investigate the origin of suspended matter to induce turbidity water in Gachang dam in view of environmental geology. During the period from May to August 2004, field works and sampling were carried out three times at the dam and along its streams, and chemical and mineralogical analyses such as ICP, IC, particle size analyzer, XRD and SEM were made on water, soil and suspended matter in water. Electrical conductivity (EC), turbidity, the contents of cation and anion increase from upstream toward the dam mostly due to the geological factors such as weathring of the rocks causing the increase of the total ion content. Vermiculite, illite, kaolinite, quartz, feldspar and iron hydroxide are commonly found in suspended matters in water and soils. Finer particles (d10) in soil increase slightly toward downstream and the vermiculite content is highest in the dam water. Since geological differences are not significant, mineralogy are similar in suspended matters and soils. Clay mineral compositions present in suspended matters were alsmost the same as those in soils, indicating the origin of soils by weathering of host rocks and being transported to the dam by stream water.

Improvement of Grouting by Short-period Vibration Energy (단주기 진동에너지에 의한 그라우팅 보강효과)

  • Seo, Moonbok;Kwon, Sanghoon;Lee, Bongjik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.7
    • /
    • pp.35-42
    • /
    • 2015
  • Grouting method has been widely used for the ground improvement and stabilization: mostly to block or control the ground water in the early years and to improve the ground, repair the structure in recent years, ever increasing its use. Despite many advantages so far, the existing grouting method also has some shortcomings including uncertain permeation of grouting with gravity type if the voids between the soil particles are narrow, and problems due to the relaxation of the neighboring ground when injected using injection pressure. As an alternative, a vibration injection method with constant amplitude and frequency has been developed in recent years, with the vibration grouting being reported to have a permeability increasing effect of grout material compared with the positive pressure injection type. Accordingly, the purpose of this study is to investigate the improvement effect of the vibration grouting that applies short-period vibration energy by varying vibration cycle, vibration time and ground conditions to evaluate the strength enhancing effect of grouting materials, expansion effect of grouting body, ground improvement effect of the grouting and the penetration characteristics of the rock joint. The findings of this study show the improved compressive strength of grout, expansion of grouting body and increased penetration rate, according to the vibration compared with non-vibration under the loose soil condition.

Crystallinity and Chemical Reactivity of Bimessite(δ-MnO2) Influenced by Iron (철에 의한 버네사이트의 결정도 및 화학적 활성의 변화)

  • Kim, Jae-Gon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.4
    • /
    • pp.327-332
    • /
    • 1999
  • Manganese (Mn) oxides in soils have been a research subject since they react with nutrients and contaminants and Mn itself is an essential element for plant growth. Birnessite was synthesized in the presence of iron (Fe) in the precipitating solution. Influence of Fe, one of common elements in soils, on crytallinity, morphology, and chemical reactivity of birnessite was examined using X-ray diffraction (XRD), electron microscope, canon exchange capacity (CEC), and chromium (Cr) oxidation capacity. With increasing Fe concentration in the precipitating solution, crystallinity and crystal size decreased. Hexagonal plates of the birnessites formed at low Fe concentration were dominant and replaced more and more by aggregate of small particles with increasing the Fe concentration. There is no significant change in CEC with changing the Fe concentration. Chromium oxidation capacity of the birnessite increased with increasing the Fe concentration. Iron in the precipitating solution poisoned crystal growth by adsorption on the surface and increased nucleation. Since Fe is a common constituent under pedogenic environment and Fe and Mn oxides often coexist in Mn oxide nodules, the birnessite with small particle, low crystallinity, and high chemical reactivity is the form which is more likely to be formed in soils. The high CEC ($140cmol_ckg^{-1}$) and oxidation capacity of birnessite indicate that birnessite can be used in environment and agriculture.

  • PDF

Ecological Characteristic of Clithon retropictus inhabitating in Yeoncho River in Southern Coastal Area (남해안 연초천에 서식하는 기수갈고둥의 생태적 특성 연구)

  • Lee, Soo-Dong;Kim, Mi-Jeong;Kim, Ji-Suk
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.6
    • /
    • pp.591-602
    • /
    • 2018
  • Clithon retropictus has been designated as an endangered wildlife Class II due to its high value as a biological indicator species capable of judging environmental quality such as salinity, water flow, and ground conditions. However, basic research on its physiological and ecological characteristics is still lacking. As such, this study intended to examine the impact of environmental conditions such as salinity and soil particle size on the size and density of Clithon retropictus at the Yeoncho river estuary. The investigation of the salinity, which is a key variable that affects the distribution of organisms in the estuary, showed that Clithon retropictus could grow at a salinity ranging from 0#x2030; (freshwater) to 25‰ (brackish water). The coarse gravel (19-75mm) tended to increase nearer the upper stream (under the Yeoncho weir), while the proportion of particles smaller than sand (less than 19mm) increased toward the downstream. The population and the size of the individuals decreased rapidly in the downstream where water stagnated near the Yeoncho weir, and the salt water joined. The results indicated that Clithon retropictus had a high tolerance to salinity, but the adaptability was weaker toward the extremes since the population, and the size tended to decrease as the salinity increased. The correlation analysis revealed that both salinity and soil particle size affected the population and individual size. The correlation between the individual size and salinity was -0.242 (P <0.01), indicating that the size decreased with increasing salinity. The correlation between individual size and coarse gravel having a particle size of 19mm or more was 0.420 (P <0.01), indicating that the size increased with increasing the particle size.

Development of Geochemical Tracers to Identify a Specific Source Region of Mineral Dust in China and Preliminary Test of Their Applicability (중국 기원 광물성 먼지 입자의 지화학 추적자 개발 및 기초 적용연구)

  • Lee, Sojung;Hyeong, Kiseong;Kim, Wonnyon;Kim, Tae-Hoon
    • Ocean and Polar Research
    • /
    • v.41 no.3
    • /
    • pp.169-181
    • /
    • 2019
  • The purpose of this study is to develop geochemical tracers to identify a specific source desert of mineral dust in China using the published data. In addition, we tested the applicability of these tracers to wet-deposits and soil samples collected in Jeju, Korea. Because of similarity in trace elemental compositions of mineral dust from the major arid regions in China, such as Taklimakan, West Ordos (Badain Jaran), East Ordos (Mu Us and Hobq), East Northern China (Horqin), West Northern China (Gurbantunggut), and Chinese Loess Plateau, there has been limited to the use of geochemical data for source identification. Here we propose the four (4) plots using combination of seven (7) geochemical variables as a source indicator to distinguish one from other source regions in China: $\frac{Y}{Tb_N}$ vs. $\frac{Th}{{\Sigma}REE_N}$, $\(\frac{La}{Gd}\)_N$ vs. $\frac{Y}{{\Sigma}REE_N}$, $\frac{Th}{Tb_N}$ vs. $\frac{Y}{Nd_N}$, and $\frac{Th}{Tb_N}$ vs. $\(\frac{Ce}{Ce}\)_N^*$, where $_N$ and $\(\frac{Ce}{Ce}\)_N^*$ stand for values normalized to Post-Archean Average Shale composition and Ce anomaly, respectively. Mineral dusts from aforementioned six major deserts are distinguished one from the others by the combined use of these variables. Jeju rock and soil samples form a separate domain from Chinese mineral dusts in all four plots. In contrast, most of Jeju dust samples were comparable with the West Ordos desert (Badain Jaran) domain, indicative of strong influence of Badain Jaran dust in Jeju in spring season when the mineral dust was collected. A weak positive Ce anomaly in Jeju samples implies minimal local contribution. Our study suggests that the combination of $\frac{Y}{Tb_N}$ vs. $\frac{Th}{{\Sigma}REE_N}$, $\(\frac{La}{Gd}\)_N$ vs. $\frac{Y}{{\Sigma}REE_N}$, $\frac{Th}{Tb_N}$ vs. $\frac{Y}{Nd_N}$, and $\frac{Th}{Tb_N}$ vs. $\(\frac{Ce}{Ce}\)_N^*$ can be used to identify a specific source region of mineral dust in China as well as Jeju mineral particles.

DEM numerical study for the effect of scraper direction on shield TBM excavation in soil (개별요소법을 이용한 스크래퍼 비트방향이 토사지반에서의 쉴드 TBM 굴진에 끼치는 영향 연구)

  • Lee, Gi-Jun;Kim, Huntae;Kwon, Tae-Hyuk;Cho, Gye-Chun;Kang, Shin-Hyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.5
    • /
    • pp.689-698
    • /
    • 2019
  • In tunnel excavation by TBMs, a cutterhead, which practically excavates the ground, is an important part directly affecting net penetration rate. Most of the researches on the cutterhead design that have been carried out until now are on the cutter arrangement. It is difficult to find a study for the effect of the scraper installation direction on TBM excavation although same cutterheads except for direction of the scraper are used in Korea. Therefore, this paper shows how the direction of scraper installation affects shield-TBM excavation. Discrete element method was used to identify the effect of scraper installation direction on shield-TBM excavation. When the scraper installation direction was outward, the amount of particles per unit time flowed into the cutter head opening was smaller than when the scraper installation direction was inward, and more loads were applied to the cutterhead.

On-site Conservation Treatment of the Beaker-shaped Pottery from Yori, Hyangnam, Hwaseong (화성 향남 요리 출토 심발형 토기 수습과 보존처리)

  • Kwon, Ohyoung;Ham, Chulhee;Lee, Sunmyoung
    • Journal of Conservation Science
    • /
    • v.36 no.6
    • /
    • pp.494-504
    • /
    • 2020
  • Ten historic sites (denoted as A- J in this study) of a tomb were found during the construction of the east-west expressway in District 2 of Hyangnam, Hwaseong, which is implemented by the Gyeonggi-do headquarters of the Korea Land & Housing Corporation. Thetombswere first detected at siteH, and further investigations revealed various tombs from the Three Kingdoms period; artifacts such as gilt-bronze shoes and caps were excavated from wooden coffins in the tombs. The pottery examined in this study was the only pottery artifact excavated from the site. Its raw clay was soft and loose, reddish brown, and had quartz and feldspar particles of < 1 mm, which appeared to have been added as reinforcing agents. The firing temperature of the pottery was estimated to be under 800-870 ℃ as the mica remains and tridimite, which is the phase transition mineral of quartz, was not produced; a slight endothermic peak was also detected because of the hydration of sericite at 800 ℃. The condition of the artifact was severely weakened because of various factors, such as soil pressure from the stratum formed over the site and repeated freezing and thawing. The artifact could not be collected alone, and thus, surrounding soil that had attached to the artifact was also collected; the artifact was transported to the laboratory and conservation treatment was conducted in a safe and systematic manner.

Injection Characteristics Evaluation of Conductive Grout Material According to Carbon Fiber Mixing Ratio (탄소섬유 배합비에 따른 전도성 그라우트 재료의 주입특성평가)

  • Hyojun Choi;Wanjei Cho;Hyungseok Heo;Teawan Bang;Chanyoung Yune
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.1
    • /
    • pp.15-23
    • /
    • 2023
  • The grouting method is a method of construction for the purpose of waterproofing and reinforcing soft ground. When grout is injected into the ground, there are various types of penetration and diffusion of grout depending on the shape of the ground, the size of soil, the porosity, and the presence or absence of groundwater. the current situation. Therefore, in this study, to investigate the penetration performance of the grouting to conductive material, laboratory tests were performed on the addition of the conductive material. In the injection test, 0%, 3%, and 5% of the mixed water were added as conductive materials to the grout, and the original ground condition was composed of various types of ground composed of gravel and silica sand. Conductive grout is injected by pressure into the model ground using a dedicated injection device, and the injection time (t), pressure (p), flow rate (v) and injection amount (q) are measured, and the hardened body injected in the model ground is collected. Penetration performance was evaluated. In the results of the grout injection experiment, the amount of conductive material used and the grout injection rate showed an inverse relationship, and it was confirmed that the penetration pattern was changed according to the size of the soil particles in the model ground. The grout containing the conductive material has relatively good penetration into the ground and excellent strength and durability of the hardened body, so it was judged that it could be used as an additive for measuring the penetration range of the grout.

Effect of Fines Content on the Cyclic Shear Characteristics of Sand-clay Mixtures (점토혼합모래의 반복전단특성에 대한 세립분 함유율의 영향)

  • Kim, Uk-Gie;Hyodo, Masayuki;Ahn, Tae-Bong
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.1
    • /
    • pp.51-59
    • /
    • 2008
  • In this study, cyclic shear characterics of sand-clay mixtures were analyzed. In order to perform cyclic triaxial tests on sand clay mixtures, natural clays with activity and silica sand were mixed variously to reproduce soils with wide range of grain size compositions. Test specimens with various fines contents were prepared by the moisture compaction and pre-consolidation methods, while paying attention to the void ratio expressed in terms of the sand structure and clay structures, and undrained cyclic shear tests were performed. In the test results, cyclic shear strength decreased with increasing of sand granular void ratio below 20% of fine contents. When the granular void ratio of the test specimen exceeded the maximum void ratio of the silica sand, the clay matrix dominated the soil structure, and soil structures were not influenced by compaction energy. It was observed that, the matrix structure of the coarse particles has great effect on the undrained cyclic shear strength characteristics for sand-clay mixtures, and therefore, it is more appropriate to pay more attention to the density of the sand structure, rather than to the fines content.