• Title/Summary/Keyword: Soil Particles

Search Result 676, Processing Time 0.025 seconds

A Prediction Model for Removal of Non-point Source Pollutant Considering Clogging Effect of Sand Filter Layers for Rainwater Recycling (빗물 재활용을 위한 모래 정화층의 폐색특성을 고려한 비점오염원 제거 예측 모델 연구)

  • Ahn, Jaeyoon;Lee, Dongseop;Han, Shinin;Jung, Youngwook;Choi, Hangseok
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.6
    • /
    • pp.23-39
    • /
    • 2014
  • An artificial rainwater reservoir installed in urban areas for recycling rainwater is an eco-friendly facility for reducing storm water effluence. However, in order to recycle the rainwater directly, the artificial rainwater reservoir requires an auxiliary system that can remove non-point source pollutants included in the initial rainfall of urban area. Therefore, the conventional soil filtration technology is adopted to capture non-point source pollutants in an economical and efficient way in the purification system of artificial rainwater reservoirs. In order to satisfy such a demand, clogging characteristics of the sand filter layers with different grain-size distributions were studied with real non-point source pollutants. For this, a series of lab-scale chamber tests were conducted to make a prediction model for removal of non-point source pollutants, based on the clogging theory. The laboratory chamber experiments were carried out by permeating two types of artificially contaminated water through five different types of sand filter layers with different grain-size distributions. The two artificial contaminated waters were made by fine marine-clay particles and real non-point source pollutants collected from motorcar roads of Seoul, Korea. In the laboratory chamber experiments, the concentrations of the artificial contaminated water were measured in terms of TSS (Total Suspended Solids) and COD (Chemical Oxygen Demand) and compared with each other to evaluate the performance of sand filter layers. In addition, the accumulated weight of pollutant particles clogged in the sand filter layers was estimated. This paper suggests a prediction model for removal of non-point source pollutants with theoretical consideration of the physical characteristics such as the grain-size distribution and composition, and change in the hydraulic conductivity and porosity of sand filter layers. The lumped parameter ${\theta}$ related with the clogging property was estimated by comparing the accumulated weight of pollutant particles obtained from the laboratory chamber experiments and calculated from the prediction model based on the clogging theory. It is found that the lumped parameter ${\theta}$ has a significant influence on the amount of the pollutant particles clogged in the pores of sand filter layers. In conclusion, according to the clogging prediction model, a double-sand-filter layer consisting of two separate layers: the upper sand-filter layer with the effective particle size of 1.49 mm and the lower sand-filter layer with the effective particle size of 0.93 mm, is proposed as the optimum system for removing non-point source pollutants in the field-sized artificial rainwater reservoir.

Spatial Distribution of Rice Root under Long-term Chemical and Manure Fertilization in Paddy (화학비료 및 희비 장기시용에 따른 벼 뿌리 분포 특성)

  • 전원태;박창영;조영손;박기도;윤을수;강위금;박성태;최진용
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.6
    • /
    • pp.484-489
    • /
    • 2003
  • It is well known that root distribution of rice is a crucial factor for nutrient absorbtion and affect by soil fertility management. However, the findings on root distribution are limited due to laborious and tedious work. The characteristics of root distribution were investigated in long-term fertilizer experiment plots that were established in paddy soil, a fine silty family of typic Hal-paqueps (Pyeongtaeg series) in 1967. fertilizer experiment plots of no fertilizer, compost, NPK and NPK+compost plot have been maintained consistently for the past thirty six year and Npk+silicate plot for the past twenty two years. In NPK plot, 150kg N (urea), 100kg -$\textrm{P}_2\textrm{O}_5$ (fused phosphate) and 100kg $\textrm{K}_2\textrm{O}$(potassium chloride) per hectare have been applied. For NPK+silicate plot, 500kg $\textrm{Si}\textrm{O}_2$ (silicate) was applied in addition to fertilizer in NPK plot. For the compost plot, 10,000kg rice straw compost per hectare were applied. Root samples were taken from the positions of hill-center (below hill) and mid-point of four adjacent rice hills at heading stage by cylinder monolith (CM) method. The soil cores were sampled 20cm depth from the soil surface and partitioned four into layers at an interval of 5cm. The soil particles surrounding roots were washed out with tap water, Length and weight of the roots in each soil layer were measured and root length density (RLD), root weight density (RWD), specific root length(SRL) and rooting depth index (RDI) were calculated. Total root length was measured by intersection method. Plant height, tiller and shoot dry weight were the highest in NPK+compost plot. But RLD of hill-center soil cores was the highest in no-fertilizer plots. In the soil cores from mid-point position of four adjacent hills, RLD at 15-20cm soil depth was higher in compost plot than NPK plot. RLD in compost plots showed even distribution compared to those in chemical- fertilizer plots. RWD was the highest in the NPK+compost plot. SRL was the lowest in the NPK+silicate plot. RDI was the highest in the compost plot. Also, in this experiment it was found that the distribution of roots was closely related to the physical properties of the soil as affected by fertilization management.

Sorption of PAHs by Soil Humins and Effect of Soil Inorganic Matrixs (PAHs의 토양휴민과의 흡착특성 및 토양 무기물의 영향 해석)

  • Lim, Dong-Min;Lee, Seung-Sik;Shin, Hyun-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.12
    • /
    • pp.1337-1346
    • /
    • 2006
  • Soil humin is the insoluble fraction of humic materials and play an important roles in the irreversible sorption of hydrophobic organic contaminants onto soil particles. However, there have been limited knowledge about the sorption and chemical properties of humin due to the difficulties in its separation from the inorganic matrix(mainly clays and oxides). In this study, de-ashed soil humins($Hu_1-Hu_6$) were isolated from a soil residues(Crude Hu) after removing alkali-soluble organic fractions followed by consecutive dissolution of the mineral matrix with 2%-HF for 2 hr. The humin samples were characterized by elemental analysis and $^{13}C$ NMR spectroscopic method and their sorption-desorption behavior for 1-naphthol were investigated from aqueous solution. The results were compared one another and that with peat humin. $^{13}C$ NMR spectra features indicate that the soil humin molecules are mainly made up of aliphatic carbons(>80% in total carbon) including carbohydrate, methylene chain. Freundlich sorption parameter, n was increased from 0.538 to 0.697 and organic carbon-normalized sorption coefficient(log $K_{OC}$) values also increased from 2.43 to 2.74 as inorganic matrix of the soil humin removed by HF de-ashing. The results suggest that inorganic phase in humin plays an important, indirect role in 1-naphthol sorption and the effects on the sorption non-linearity and intensity are analyzed by comparison between the results of soil humin and peat humin. Sorption-desorption hysteresis were also observed in all the humin samples and hysteresis index(HI) at low solute concentration($C_e$=0.1 mg/L) are in order of Peat humin(2.67)>De-ashed humin(0.74)>Crude Hu(0.59).

Experimental Study on the Unsaturated Characteristics of Dredging Soils at Saemangeum Area (새만금지역 준설토의 불포화 특성에 대한 실험적 연구)

  • Song, Young-Suk;You, Seung-Kyong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.3
    • /
    • pp.25-32
    • /
    • 2011
  • The matric suction and volumetric water content of dredging soils obtained from Saemangeum area were measured by the automated Soil-Water Characteristic Curve (SWCC) apparatus under both drying and wetting conditions. Based on the test result, SWCCs of the dredging soils were estimated by the van Genuchten(1980) model. The matric suction of drying process is larger than that of wetting process at a same effective degree of saturation. The suction stresses for various matirc suctions were estimated using Lu and Likos(2006) model and the Suction Stress Characteristic Curves (SSCC) were predicted using the independent parameter of SWCC. The suction stress of drying path was increased and decreased, while the suction stress of wetting path was continuously decreased with increasing the effective degree. Also, the suction stress of drying path is larger than that of wetting path at a same effective degree of saturation. The Hydraulic Conductivity Function(HCF) was also predicted by the van Genuchten(1980) model. The hydraulic conductivity was increased with increasing the volumetric water content. The hydraulic conductivity of drying path is larger than that of wetting path at a same matric suction. According to the results of SWCCs and SSCCs, the hysteresis phenomenon of suction stress or matric suction during both drying and wetting paths was occurred. The main reason of hysteresis phenomenon is a ink bottle effect of water among soil particles.

A Study of Physicochemical and Mineralogical Properties of Heavy Metal Contaminated-Soil Particles from the Kangwon and Donghae Mines (강원광산과 동해광산주변 중금속 함유 토양입자의 이화학적·광물학적 특성연구)

  • Lee, Choong Hyun;Kim, YoungJae;Lee, Seon Yong;Park, Chan Oh;Sung, Yoo Hyun;Lee, Jai-Young;Choi, Ui Kyu;Lee, Young Jae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.197-207
    • /
    • 2013
  • Soil samples collected at the Kangwon and Donghae mines were investigated for the characterization of heavy metals using physicochemical and mineralogical properties. Arsenic (As) concentrations of soil samples sieved above 18 mesh and under 325 mesh at the Kangwon mine are 250.5 to 445.7 ppm, respectively. For soil samples sieved above 18 mesh at the Donghae mine, the concentrations of As, Pb, and Zn are 70.4, 1,055, and 781.9, while 117.7 ppm for As, 2,295 ppm for Pb, and 1,346 ppm for Zn are shown for the samples sieved under 325 mesh. XRD and SEM data indicated that the samples from the Kangwon mine included quartz, mica, albite, chlorite, magnetite, and amphibole while those from the Donghae mine contained quartz, mica, kaolinite, chlorite, amphibole, and rutile. SEM-EDS showed that magnetite found in the samples at the Kangwon mine was positively correlated with arsenic concentrations whereas ilmenite in the samples from the Donghae mine contained only small amount of As. Our results suggest that physicochemical and mineralogical characterization plays an important role in optimizing recovery treatments of soils contaminated in mine development areas.

Size-resolved Source Apportionment of Ambient Particles by Positive Matrix Factorization at Gosan, Jeju Island during ACE-Asia (PMF 분석을 이용한 ACE-Asia 측정기간 중 제주 고산지역 입자상 물질의 입경별 발생원 추정)

  • Moon K.J.;Han, J.S.;Kong, B.J.;Jung, I.R.;Cliff Steven S.;Cahill Thomas A.;Perry Kelvin D.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.5
    • /
    • pp.590-603
    • /
    • 2006
  • Size-and time-resolved aerosol samples were collected using an eight-stage Davis rotating unit for monitoring (DRUM) sampler from 23 March to 29 April 2001 at Gosan, Jeju Island, Korea, which is one of the super sites of Asia-Pacific Regional Aerosol Characterization Experiment(ACE-Asia). These samples were analyzed using synchrotron X-ray fluorescence for 3-hr average concentrations of 19 elements including Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Rb, and Pb. The size-resolved data sets were then analyzed using the positive matrix factorization(PMF) technique to identify possible sources and estimate their contributions to particulate matter mass. PMF analysis uses the uncertainty of the measured data to provide an optimal weighting. Twelve sources were resolved in eight size ranges($0.09{\sim}12{\mu}m$) and included continental soil, local soil, sea salt, biomass/biofuel burning, coal combustion, oil combustion, municipal incineration, nonferrous metal source, ferrous metal source, gasoline vehicle, diesel vehicle, and volcanic emission. The PMF result of size-resolved source contributions showed that natural sources represented by local soil, sea salt, continental soil, and volcanic emission contributed about 79% to the predicted primary particulate matter(PM) mass in the coarse size range ($1.15{\sim}12{\mu}m$) while anthropogenic sources such as coal combustion and biomass/biofuel burning contributed about 58% in the fine size range($0.56{\sim}2.5{\mu}m$). The diesel vehicle source contributed mostly in ultra-fine size range($0.09{\sim}0.56{\mu}m$) and was responsible for about 56% of the primary PM mass.

Secondary Compression Characteristics Caused by Particles Crushing of Sabkha Soil (입자파쇄 특성에 따른 Sabkha층의 이차압축 특성)

  • Kim, Seok-Ju;Bae, Kyung-Tae;Yi, Chang-Tok;Han, Heui-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.11
    • /
    • pp.61-72
    • /
    • 2013
  • The consolidation tests are conducted to investigate the soil particle crushing stress for understanding the secondary compression characteristics of carbonate sandy sabkha soil caused by particle crushing under a high confining stress. The rate of secondary crushing compression ($C_{{\alpha}{\epsilon}}{^*}$) is introduced instead of the rate of secondary compression to define the characteristic of the particle crushing compression settlement ($S_s{^*}$). Void ratio ($e_p{^*}$) and settlement ($H_p{^*}$) in particle crushing are used as a reference point of secondary behavior, and the ratio of primary compression index ($C_c$) to secondary crushing compression ($C_{{\alpha}{\epsilon}}{^*}$), $C_{{\alpha}{\epsilon}}{^*}/C_c$ value was changed from 0.0105 to 0.0187. When comparing with quartz sands, secondary compression settlement of sabkha is very large due to particle crushing which is not usually observed in quartz sand. It is observed that as the depth of sabkha layer becomes deep, the $S_s{^*}$ and $C_{{\alpha}{\epsilon}}{^*}$ increase under the same stress level.

Particle Size Effects of Devarda's Alloy on the Recovery of Nirate N Determined by the Steam Distillation Method (질산태 질소 정량을 위한 환원 증류법에서 Devarda's Alloy의 입자크기 및 함량이 미치는 영향)

  • Jung, Seok-Ho;Kwon, Hyun-Jae;Chung, Doug-Young;Han, Gwang-Hyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.387-393
    • /
    • 2011
  • We analyzed the particle size distributions of three commercially available Devarda's alloy (DA) products, tested the nitrate recoveries of each particle size category, and examined the amounts of DA required for 100% recovery by varying $NO_3$-N concentration from 0.5 to 10 mg. We observed that use of DA coarser than 200 mesh resulted in poor analytical recovery (<80%). While the tested alloys were considered to be fine enough (>90% of the particles were less than 100 mesh), the recovery dramatically declined from 80% to 10% in a high concentration range (4 to 10 mg N). Satisfactory recovery was obtained by increasing the amount of finer DA (less than 300 or 450 mesh). However, there was no quantitative relationship between the amount of fine DA and nitrate recovered. Generally, the amount of nitrate reduced per unit DA decreased as the recovery efficiency declined. These results suggest that a sufficient amount of DA must be determined based on particle size distribution, and that treatment of at least two levels of DA and comparison of the subsequent change in nitrate recovery is required for soils containing high levels of nitrate. In addition, further studies are encouraged to account for the observed stoichiometric dis-equivalence of recovered nitrate N per unit mass of DA.

Stiffness Characterization of Biopolymer-treated Sandy Soils using Shear Wave Velocity (전단파속도를 이용한 바이오폴리머 처리 사질토의 강성특성 평가)

  • Cho, Hyunmuk;Jun, Minu;Lee, Eun Sang;Hong, Won-Teak
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.3
    • /
    • pp.55-63
    • /
    • 2024
  • Xanthan gum biopolymer is an ecofriendly ground stabilizer that maintains stability in a wide range of temperatures and pH values. The binding effect of sandy soil particles realized by injecting xanthan gum biopolymer is dependent on the xanthan gum matrix, which is formed during the drying process; thus a study on the effects of the drying process of the xanthan gum solution on the changes in stiffness characteristics of sandy soil is required. In this study, shear wave velocity and electrical resistivity were monitored in sandy soil specimens saturated with biopolymer solutions of different gravimetric concentrations to investigate the improvement effects of biopolymer-treated sandy soils with the drying process. The experimental results reveal that both shear wave velocity and electrical resistivity increase during drying process. The results demonstrate the stiffness improvement effects of biopolymer-treated sandy soils. In addition, a higher stiffness improvement effect was monitored in the biopolymer-treated sandy soils with a higher gravimetric concentration. The results of this study may be used to estimate the stiffness improvement effects of sandy soils treated with biopolymer solutions with the drying process.

A study of compaction ratio and permeability of soil with different water content (축제용흙의 함수비 변화에 의한 다짐율 및 수용계수 변화에 관한 연구)

  • 윤충섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.13 no.4
    • /
    • pp.2456-2470
    • /
    • 1971
  • Compaction of soil is very important for construction of soil structures such as highway fills, embankment of reservoir and seadike. With increasing compaction effort, the strength of soil, interor friction and Cohesion increas greatly while the reduction of permerbilityis evident. Factors which may influence compaction effort are moisture content, grain size, grain distribution and other physical properties as well as the variable method of compaction. The moisture content among these parameter is the most important thing. For making the maximum density to a given soil, the comparable optimum water content is required. If there is a slight change in water content when compared with optimum water content, the compaction ratio will decrease and the corresponding mechanical properties will change evidently. The results in this study of soil compaction with different water content are summarized as follows. 1) The maximum dry density increased and corresponding optimum moisture content decreased with increasing of coarse grain size and the compaction curve is steeper than increasing of fine grain size. 2) The maximum dry density is decreased with increasing of the optimum water content and a relationship both parameter becomes rdam-max=2.232-0.02785 $W_0$ But this relstionship will be change to $r_d=ae^{-bw}$ when comparable water content changes. 3) In case of most soils, a dry condition is better than wet condition to give a compactive effort, but the latter condition is only preferable when the liquid limit of soil exceeds 50 percent. 4) The compaction ratio of cohesive soil is greeter than cohesionless soil even the amount of coarse grain sizes are same. 5) The relationship between the maximum dry density and porosity is as rdmax=2,186-0.872e, but it changes to $r_d=ae^{be}$ when water content vary from optimum water content. 6) The void ratio is increased with increasing of optimum water content as n=15.85+1.075 w, but therelation becames $n=ae^{bw}$ if there is a variation in water content. 7) The increament of permeabilty is high when the soil is a high plasticity or coarse. 8) The coefficient of permeability of soil compacted in wet condition is lower than the soil compacted in dry condition. 9) Cohesive soil has higher permeability than cohesionless soil even the amount of coarse particles are same. 10) In generall, the soil which has high optimum water content has lower coefficient of permeability than low optimum water content. 11) The coefficient of permeability has a certain relations with density, gradation and void ratio and it increase with increasing of saturation degree.

  • PDF