• Title/Summary/Keyword: Soil Particles

Search Result 676, Processing Time 0.025 seconds

Shear Strength of Intermediate Soils with Different Types of Fines and Sands

  • Kim, Ukgie;Ahn, Taebong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.1
    • /
    • pp.33-42
    • /
    • 2013
  • In this paper, a series of monotonic undrained shear tests were carried out on four kinds of sand-fine mixtures with various fines content. Two kinds of sands (Silica sand V3, V6) and fines (Iwakuni natural clay, Tottori silt) were mixed together in various proportions, while paying attention to the void ratio expressed in terms of sand structure $(F_c{\leq}F_{cth})$. The undrained shear strength of mixtures below the threshold fines content was observed so that as the plastic fines content increases, maximum deviator stress ratio decrease for dense samples while an increase is noted for loose samples. For non-plastic fines, the increase in the amount of fines leads to an increase in density of the soil, which results in an increase in strength. Then, the monotonic shear strength of the mixtures was estimated using the concept of granular void ratio. It was found that the shear strength of mixtures is greatly dependent on the skeleton structure of sand particles.

Studies on Moor Vegetation of Mt. Daeam, East-Central Korea (대암산 습원의 식생)

  • Choi, Ki-Ryong;Koh, Jae-Kee
    • The Korean Journal of Ecology
    • /
    • v.12 no.4
    • /
    • pp.237-244
    • /
    • 1989
  • The moor vegetation of Daeryong-po on Mt. Daeam, east-central Korea was investigated in July 26th-29th, 1989, It was classified into I community group, 4 communities and 5 subcommunities; Sanguisorba tenuifolia var. alba community group, Sphagnum palustre community. Typical subcommunity, Eleocharis mamillata var. cyclocarpa subcommunity, Carex canescense subcommunity, Carex dispalata community, Spiraea salicifolia community, Geranium eriiostemon var. megalanthum community, Arundinella hirta-Phragmites communis subcommunity, Angelica purpuraefolia subcommunity. According to this classification, the actual vegetation map was made. The distribution of vegetation in this moor was divided characteristically into two areas. One was a typical oligotrophic area characterized by S. palustre community. The other was an area having mesotrophic or eutrophic conditions where its original state was disturbed by inflow of soil particles and removal of peat. It this disturbed area, C. dispalata, S. sibiricus, G. eriostemon var. megalanthum, were invaded.

  • PDF

OPTICAL PROPERTIES OF ASIAN DUST AEROSOL DERIVED FROM SEAWIFS AND LIDAR OBSERVATIONS: A CASE STUDY OF DUST OVER CLOUDS

  • Fukushima, H.;Kobayashi, H.;Murayama, T.;Ohta, S.;Uno, I.
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.367-372
    • /
    • 2002
  • Asian dust aerosol layer of 4-6 km altitude accompanied by low clouds was observed by LIDAR and sky-radiometer in Tokyo urban area on April 10, 2001. To synthesize the top of atmosphere (TOA) reflectance, radiative transfer simulation conducted assuming aerosol/cloud vertical structure and aerosol size distribution that were modeled after the ground observations. The refractive index of Asian dust is derived from a laboratory measurement of sampled Chinese soil particles. The synthesized TOA reflectance is compared to the SeaWiFS-derived one sampled at the low cloud pixels whose airmass is the same as the one passed at the observation site. While the two TOA reflectances compare generally well with few percent difference in reflectance, possible sources of the discrepancy are discussed.

  • PDF

Influence of Ectomycorrhizal Colonization on Cesium Uptake by Pinus densiflora Seedlings

  • Ogo, Sumika;Yamanaka, Takashi;Akama, Keiko;Nagakura, Junko;Yamaji, Keiko
    • Mycobiology
    • /
    • v.46 no.4
    • /
    • pp.388-395
    • /
    • 2018
  • Radionuclides were deposited at forest areas in eastern parts of Japan following the Fukushima Daiichi Nuclear Power Plant incident in March 2011. Ectomycorrhizal (EM) fungi have important effects on radiocaesium dynamics in forest ecosystems. We examined the effect of colonization by the EM fungus Astraeus hygrometricus on the uptake of cesium (Cs) and potassium (K) by Pinus densiflora seedlings. Pine seedlings exhibited enhanced growth after the EM formation due to the colonization by A. hygrometricus. Additionally, the shoot Cs concentration increased after the EM formation when Cs was not added to the medium. This suggests that A. hygrometricus might be able to solubilize Cs fixed to soil particles. Moreover, the shoot K concentration increased significantly after the EM formation when Cs was added. However, there were no significant differences in the root K concentration between EM and non-EM seedlings. These results suggest that different mechanisms control the transfer of Cs and K from the root to the shoot of pine seedlings.

Improvement of the geotechnical engineering properties of dune sand using a plant-based biopolymer named serish

  • Shabani, Khosro;Bahmani, Maysam;Fatehi, Hadi;Chang, Ilhan
    • Geomechanics and Engineering
    • /
    • v.29 no.5
    • /
    • pp.535-548
    • /
    • 2022
  • Recently, the construction industry has focused on eco-friendly materials instead of traditional materials due to their harmful effects on the environment. To this end, biopolymers are among proper choices to improve the geotechnical behavior of problematic soils. In the current study, serish biopolymer is introduced as a new binder for the purpose of sand improvement. Serish is a natural polysaccharide extracted from the roots of Eremurus plant, which mainly contains inulins. The effect of serish biopolymer on sand treatment has been investigated through performing unconfined compressive strength (UCS), California bearing ratio (CBR), as well as wind erosion tests. The results demonstrated that serish increased the compressive strength of dune sand in both terms of UCS and CBR. Also, wind erosion resistance of the sand was considerably improved as a result of treatment with serish biopolymer. A microstructural study was also conducted via SEM images; it can be seen that serish coated the sand particles and formed a strong network.

Fundamental Study on the Development of Porous Concrete Using Super Absorbent Polymer (고흡수성 수지를 활용한 다공질 구조 콘크리트 개발을 위한 기초적 연구)

  • Jo, Jae-Hyun;Baek, Sung-Jin;Lim, Gun-Su;Han, Jun-Hiu;Kim, Jong;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.217-218
    • /
    • 2023
  • This study is to develop porous concrete using super absorbent polymer, which possesses insolubility and high absorption capacity, as a substitute material for lightweight soil. Various mixtures were prepared using aggregates, cement, mixing water, and super absorbent polymer, and the absorption ratio and compressive strength were examined for each mixture. As the amount of super absorbent polymer added increased, the absorption ratio also increased, reaching up to 35-105%. However, the compressive strength decreased by 49.5% to 65.3%. This is believed to be due to the inherent properties of super absorbent polymer, which led to an increase in the absorption ratio but, in turn, reduced the binding strength of cement paste particles, resulting in a decrease in compressive strength.

  • PDF

Ecological Importance of Water Budget and Synergistic Effects of Water Stress of Plants due to Air Pollution and Soil Acidification in Korea (한국에서 수분수지의 생태적 중요성과 대기오염 및 토양 산성화로 인한 식물의 수분스트레스 증대 효과)

  • 이창석;이안나
    • The Korean Journal of Ecology
    • /
    • v.26 no.3
    • /
    • pp.143-150
    • /
    • 2003
  • Korea has plentiful precipitation but rainfall events concentrate on several months of rainy season in her weather condition. Korea, therefore, experiences drought for a given period every year. Moreover the soil has usually low water holding capacity, as it is composed coarse particles originated from the granite. Response of several oaks and the Korean red pine (Pinus densiflora) on water stress showed that water budget was significant factor determining vegetation distribution. In addition, dehydration level due to cold resistance mechanism of several evergreen plants during the winter season was closely related to their distribution in natural condition. Experimental result under water stress showed that the Korean red pine was very tolerant to desiccation but the seedlings showed high mortality during the dry season. The mortality tended to proportionate to soil moisture content of each site. A comparison between soil moisture content during June when it is severe dry season and moisture content of the culture soil when the pine seedlings reached the permanent wilting point due to water withheld proved that high mortality during the dry season was due to water deficit. Water potential of sample plants measured during the exposure experiment to the air pollutant showed a probability that water related factors would dominate the occurrence of visible damage and the tolerance level of sample plants. In both field survey and laboratory experiment, plants exposed to air pollution showed more rapid transpiration than those grown in the unpolluted condition. The result would due to injury of leaf surface by air pollutants. Aluminum (Al/sup 3+/) increased in the acid soil not only inhibits root growth but also leads to abnormal distribution of root system and thereby caused water stress. The water stresses due to air pollution and soil acidification showed a possibility that they play dominating roles in inducing forest decline additionally to the existing water deficit due to weather and soil conditions in Korea. Sludge, which can contribute to improve field capacity, as it is almost composed of organic matter, showed an effect ameliorating the retarded growth of plant in the acidified soil. The effect was not less than that of dolomite known in widely as such a soil ameliorator. Litter extract contributed also to mitigate the water stress due to toxic Al/sup 3+/. We prepared a model showing the potential interaction of multiple stresses, which can cause forest decline in Korea by synthesizing those results. Furthermore, we suggested restoration plans, which can mitigate such forest decline in terms of soil amelioration and vegetation restoration.

Physicochemical Effects of Bottom Ash on the Turfgrass Growth Media of Sandy Topsoil in Golf Course (석탄바닥재 처리가 골프장 잔디식재 사질토양의 이화학성에 미치는 영향)

  • Lee, Ju-Young;Choi, Hee-Youl;Yang, Jae-E
    • Asian Journal of Turfgrass Science
    • /
    • v.24 no.2
    • /
    • pp.199-204
    • /
    • 2010
  • Much of the coal ash by thermal power plant has gradually been increased, however researches on the recycling of bottom ash has not been investigated enough so far. In this research, the lysimeter test was conducted to find out the possibilities of bottom ash as soil amendment to improve the physiochemical properties of sandy topsoil of turfgrass in golf course. The turfgrass growth test and leaching test were conducted on the lysimeter. The lysimeter columns were manufactured with various topsoil mixing ratios of 0, 10, 20, 30, and 50% of bottom ash with sand. As a result of leachate analysis through the lysimeter column, the higher ratios of bottom ash mixed affect significantly on water holding capacity of topsoil sand media with decreasing of the percolation rate. The results of leachate analysis in every three days interval, the pH of leachate increased with the bottom ash ratios, but the volume of $NO_3$-N, $NH_4$-N and K decreased significantly. However, the level of EC of leachate had constantly maintained. These results indicate that the application of bottom ash may improve turfgrass growth with water holding capability and fertility of sandy topsoil. However, the negative effects of the bottom ash also evaluated by reducing water permeability and solubility of $PO_4$-P by adsorption into soil particles. The results indicates that the reasonable mixing ratio of the bottom ash as soil amendment should be less than 20% (v/v) with sand which has a low water-holding and fertility in golf course topsoil layers.

Research Trends for Nanotoxicity Using Soil Nematode Caenorhabditis elegans (토양선충 Caenorhabditis elegans를 이용한 나노독성 연구동향)

  • Kim, Shin Woong;Lee, Woo-Mi;An, Youn-Joo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.12
    • /
    • pp.855-862
    • /
    • 2012
  • Caenorhabditis elegans, a free-living nematode mainly found in the soil pore water, roles the critical function in trophic levels, energy flow, and decomposition in soil ecosystem. C. elegans is commonly used species to test soil toxicity. Recently, they are employed broadly as a test organism in nanotoxicology. In this study, a review of the toxicity of nanomaterials for C. elegans was presented based on SCI (E) papers. The nanotoxicity studies using C. elegans have been reported in 20 instances including the mechanism of toxicity. Most studies used K-medium, S-medium, and NGM (Nematode Growth Medium) plate as an exposure medium to test toxicity of nanoparticles. The effects observed include anti aging, phototoxicity, genotoxicity, and dermal effects on C. elegans exposed to nanoparticles. We found that the toxic mechanisms were related with various aspects such as lifespan abnormality, oxidative stress, distribution of particles on inter-organisms, and stress-related gene analysis. C. elegans has advantage to test toxicity of nanoparticles due to various cellular activities, full genome information, and easy observation of transparent body. C. elegans was considered to be a good test species to evaluate the nanotoxicity.

Transport Parameters of 99Tc, 137Cs, 90Sr, and 239+240Pu for Soils in Korea

  • Keum, D.K.;Kim, B.H.;Jun, I.;Lim, K.M.;Choi, Y.H.
    • Journal of Nuclear Fuel Cycle and Waste Technology
    • /
    • v.1 no.1
    • /
    • pp.49-55
    • /
    • 2013
  • To characterize quantitatively the transport of $^{99}Tc$ and the global fallout ($^{137}Cs$, $^{90}Sr$, and $^{239+240}Pu$) for soils in Korea, the transport parameters of a convective-dispersion model, apparent migration velocity, and apparent dispersion coefficient were estimated from the vertical depth profiles of the radionuclides in soils. The vertical profiles of $^{99}Tc$ were measured from a pot experiment for paddy soil that had been sampled from a rice-field around the Gyeongju radioactive waste repository in Korea, and the vertical depth distributions of the global fallout $^{137}Cs$, $^{90}Sr$, and $^{239+240}Pu$ were measured from the soil samples that were taken from local areas in Korea. The front edge of the $^{99}Tc$ profiles reached a depth of about 12 cm in 138 days, indicating a faster movement than the fallout radionuclides. A weak adsorption of $^{99}Tc$ on the soil particles by the formation of Tc(VII) and a high water infiltration velocity seemed to have controlled the migration of $^{99}Tc$. The apparent migration velocity and dispersion coefficient of $^{99}Tc$ for the disturbed paddy soil were 2.88 cm/y and 6.3 $cm^2/y$, respectively. The majority of the global fallout $^{137}Cs$, $^{90}Sr$, and $^{239+240}Pu$ were found in the top 20 cm of the soils even after a transport of about 30 years. The transport parameters for the global fallout radionuclides were 0.01-0.1cm/y ($^{137}Cs$), 0.09-0.13cm/y ($^{90}Sr$), and 0.09-0.18cm/y ($^{239+240}Pu$) for the apparent migration velocity: 0.21-1.09 $cm^2/y$ ($^{137}Cs$), 0.12-0.7$cm^2/y$ ($^{90}Sr$), and 0.09-0.36$cm^2/y$ ($^{239+240}Pu$) for the apparent dispersion coefficient.