• Title/Summary/Keyword: Soil Parameter

Search Result 711, Processing Time 0.027 seconds

Application of SWAT-CUP for Streamflow Auto-calibration at Soyang-gang Dam Watershed (소양강댐 유역의 유출 자동보정을 위한 SWAT-CUP의 적용 및 평가)

  • Ryu, Jichul;Kang, Hyunwoo;Choi, Jae Wan;Kong, Dong Soo;Gum, Donghyuk;Jang, Chun Hwa;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.3
    • /
    • pp.347-358
    • /
    • 2012
  • The SWAT (Soil and Water Assessment Tool) should be calibrated and validated with observed data to secure accuracy of model prediction. Recently, the SWAT-CUP (Calibration and Uncertainty Program for SWAT) software, which can calibrate SWAT using various algorithms, were developed to help SWAT users calibrate model efficiently. In this study, three algorithms (GLUE: Generalized Likelihood Uncertainty Estimation, PARASOL: Parameter solution, SUFI-2: Sequential Uncertainty Fitting ver. 2) in the SWAT-CUP were applied for the Soyang-gang dam watershed to evaluate these algorithms. Simulated total streamflow and 0~75% percentile streamflow were compared with observed data, respectively. The NSE (Nash-Sutcliffe Efficiency) and $R^2$ (Coefficient of Determination) values were the same from three algorithms but the P-factor for confidence of calibration ranged from 0.27 to 0.81 . the PARASOL shows the lowest p-factor (0.27), SUFI-2 gives the greatest P-factor (0.81) among these three algorithms. Based on calibration results, the SUFI-2 was found to be suitable for calibration in Soyang-gang dam watershed. Although the NSE and $R^2$ values were satisfactory for total streamflow estimation, the SWAT simulated values for low flow regime were not satisfactory (negative NSE values) in this study. This is because of limitations in semi-distributed SWAT modeling structure, which cannot simulated effects of spatial locations of HRUs (Hydrologic Response Unit) within subwatersheds in SWAT. To solve this problem, a module capable of simulating groundwater/baseflow should be developed and added to the SWAT system. With this enhancement in SWAT/SWAT-CUP, the SWAT estimated streamflow values could be used in determining standard flow rate in TMDLs (Total Maximum Daily Load) application at a watershed.

Multi-variable and Multi-site Calibration and Validation of SWAT for the Gap River Catchment (갑천유역을 대상으로 SWAT 모형의 다 변수 및 다 지점 검.보정)

  • Kim, Jeong-Kon;Son, Kyong-Ho;Noh, Jun-Woo;Jang, Chang-Lae;Ko, Ick-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.10 s.171
    • /
    • pp.867-880
    • /
    • 2006
  • Hydrological models with many parameters and complex model structures require a powerful and detailed model calibration/validation scheme. In this study, we proposed a multi-variable and multi-site calibration and validation framework for the Soil Water Assessment Tool (SWAT) model applied in the Gap-cheon catchment located downstream of the Geum river basin. The sensitivity analysis conducted before main calibration helped understand various hydrological processes and the characteristics of subcatchments by identifying sensitive parameters in the model. In addition, the model's parameters were estimated based on existing data prior to calibration in order to increase the validity of model. The Nash-Sutcliffe coefficients and correlation coefficient were used to estimate compare model output with the observed streamflow data: $R_{eff}\;and\;R^2$ ranged 0.41-0.84 and 0.5-0.86, respectively, at the Heuduck station. Model reproduced baseflow estimated using recursive digital filter except for 2-5% overestimation at the Sindae and Boksu stations. Model also reproduced the temporal variability and fluctuation magnitude of observed groundwater levels with $R^2$ of 0.71 except for certain periods. Therefore, it was concluded that the use of multi-variable and multi-site method provided high confidence for the structure and estimated parameter values of the model.

Assessment of Probability Flood according to the Flow Regulation by Multi-purpose Dams in Han-River Basin (한강유역의 다목적댐 운영에 따른 빈도홍수량의 평가)

  • Kim, Nam-Won;Lee, Jeong-Eun
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.2
    • /
    • pp.161-168
    • /
    • 2009
  • The purpose of this study is to evaluate the variation of probability flood according to the flow regulation by multi-purpose dams (Soyang and Chungju) in the Han-river basin, Korea. SWAT-K (Soil and Water Assessment Tool-Korea) was used in order to generate regulated and unregulated daily streamflows upstream of Paldang dam. Simulated flow regulated by the Soyang and Chungju dams was calibrated by comparison with the observed inflow data at Paldang reservoir. Generally the ratio of flood flows to daily streamflows is known to decrease with drainage area in a watershed. Regulated and unregulated flood flows were obtained from the relationship between flood flows and daily streamflows. Extreme Type-I distribution was applied for flood frequency analysis and L-moment method was used for parameter estimation. This is a novel approach capable of understanding the variation in flood frequency with dam operation for the relatively large watershed scale, and this will helps improve the applicability of daily stream flow data for use in flood control as well as in water utilization.

Hydrogeological characteristics of the LILW disposal site (처분부지의 수리지질 특성)

  • Kim, Kyung-Su;Kim, Chun-Soo;Bae, Dae-Seok;Ji, Sung-Hoon;Yoon, Si-Tae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.4
    • /
    • pp.245-255
    • /
    • 2008
  • Korea Hydro and Nuclear Power Company(KHNP) conducted site investigations for a low and intermediate-level nuclear waste repository in the Gyeong Ju site. The site characterization work constitutes a description of the site, its regional setting and the current state of the geosphere and biosphere. The main objectives of hydogeological investigation aimed to understand the hydrogeological setting and conditions of the site, and to provide the input parameters for safety evaluation. The hydogeological characterization of the site was performed from the results of surface based investigations, i.e geological mapping and analysis, drilling works and hydraulic testing, and geophysical survey and interpretation. The hydro-structural model based on the hydrogeological characterization consists of one-Hydraulic Soil Domain, three-Hydraulic Rock Domains and five-Hydraulic Conductor Domains. The hydrogeological framework and the hydraulic values provided for each hydraulic unit over a relevant scale were used as the baseline for the conceptualization and interpretation of flow modeling. The current hydrogeological characteristics based on the surface based investigation include some uncertainties resulted from the basic assumption of investigation methods and field data. Therefore, the reassessment of hydrostructure model and hydraulic properties based on the field data obtained during the construction is necessitated for a final hydrogeological characterization.

  • PDF

Evaluation of a Hydro-ecologic Model, RHESSys (Regional Hydro-Ecologic Simulation System): Parameterization and Application at two Complex Terrain Watersheds (수문생태모형 RHESSys의 평가: 두 복잡지형 유역에서의 모수화와 적용)

  • Lee, Bo-Ra;Kang, Sin-Kyu;Kim, Eun-Sook;Hwang, Tae-Hee;Lim, Jong-Hwan;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.4
    • /
    • pp.247-259
    • /
    • 2007
  • In this study, we examined the flux of carbon and water using an eco-hydrological model, Regional Hydro-Ecologic Simulation System (RHESSys). Our purposes were to develop a set of parameters optimized for a well-designed experimental watershed (Gwangneung Research Watershed, GN) and then, to test suitability of the parameters for predicting carbon and water fluxes of other watershed with different regimes of climate, topography, and vegetation structure (i.e Gangseonry Watershed in Mt. Jumbong, GS). Field datasets of stream flow, soil water content (SWC), and wood biomass product (WBP) were utilized for model parameterization and validation. After laborious parameterization processes, RHESSys was validated with the field observations from the GN watershed. The parameter set identified at the GN watershed was then applied to the GS watershed in Mt. Jumbong, which resulted in good agreement for SWC but poor predictability for WBP. Our study showed that RHESSys simulated reliable SWC at the GS by adjusting site-specific porosity only. In contrast, vegetation productivity would require more rigorous site-specific parameterization and hence, further study is necessary to identify primary field ecophysiological variables for enhancing model parameterization and application to multiple watersheds.

The Effect of Coordinate Rotation on the Eddy Covariance Flux Estimation in a Hilly KoFlux Forest Catchment (경사진 KoFlux 산림유역에서 에디공분산 플럭스 산출에 미치는 좌표회전의 효과)

  • Yuan, Renmin;Kang, Min-Seok;Park, Sung-Bin;Hong, Jin-Kyu;Lee, Dong-Ho;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.2
    • /
    • pp.100-108
    • /
    • 2007
  • The Gwangneung KoFlux supersite, located in a rugged mountain region, is characterized by a low wind speed due to a mountain-valley circulation and rolling terrain. Therefore, it is essential to understand the effect of coordinate rotation on flux measurements by the eddy-covariance method. In this paper, we review the properties of three orthogonal coordinate frames (i.e., double, triple, and planar fit rotations) and apply to flux data observed at the Gwangneung supersite. The mean offset of vertical wind speed of sonic anemometer was inferred from the planar fit (PF) coordinate rotation, yielding the diurnal variation of about $\pm0.05ms^{-1}$. Double rotation $(\bar{v}=\bar{w}=0)$ produced virtually the same turbulent fluxes of heat, water, and $CO_2$ as those from the PF rotation under windy conditions. The former, however, resulted in large biases under calm conditions. The friction velocity, an important scaling parameter in the atmospheric surface layer, was more sensitive to the choice of coordinate rotation method.

Preliminary screening of leafy vegetable New Zealand spinaches (Tetragonia tetragonioides) native to Korea (국내 자생 엽채류 번행초의 우수 유전자원 기초 선발)

  • Kim, In-Kyung;Lee, Ka Yeon;Kim, Sung-Ki;Kim, Byung-Woon;Choi, Weon-Young;Lee, Geung-Joo
    • Korean Journal of Agricultural Science
    • /
    • v.39 no.4
    • /
    • pp.515-523
    • /
    • 2012
  • Recent development and enlargement of reclaimed lands along the sea shores required to explore alternatives to existing crops, which are suitable to grow well and to declare higher profits. The objectives of this study were to investigate yield-related parameters for development of new leafy vegetables, and to screen some candidates among New Zealand spinach genotypes which were collected in Korea. Initially all the collected genotypes were grown for 7 weeks in a greenhouse of the experiment field in Chungnam National University, and then transplanted into the field to measure morphological or physiological parameters (plant height, branch number, stem diameter, chlorophyll content, and maximum canopy diameter), and yield-related parameters (leaf number, leaf length, leaf width, fresh weight and dry weight). Those parameters were quantitatively measured at 1, 5 or 9 weeks after transplanting (WAT). Parameters exhibiting statistically significant difference among the accessions were plant height, branch number, maximum canopy diameter, chlorophyll content, and leaf length. In contrast to highly correlated parameters with fresh and dry weight obtained in salt-affected soil in the earlier report, fresh weight was correlated significantly with leaf length (r=0.72), leaf width (r=0.64), and canopy diameter(r=0.66), while dry weight was correlated significantly with plant height (r=0.46), leaf length (r=0.72), leaf width (r=0.73), fresh weight (r=0.79), chlorophyll content (r=0.47), and canopy diameter (r=0.87). Based on the significantly correlated with yield parameters, the candidate accessions which were ranked in top statistical groups include CNU06A01, CNU06A13, CNU06A26, CNU06A35, CNU06A38, and CNU06A55. In order to be cultivated in reclaimed lands, it is necessary to screen out salt tolerant accessions among the above high-yielding genotypes.

Estimation of Specific Yield Using Rainfall and Groundwater Levels at Shallow Groundwater Monitoring Sites (충적층 지하수 관측지점의 강우량 대비 지하수위 변동 자료를 활용한 비산출율 추정)

  • Kim, Gyoobum
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.6
    • /
    • pp.57-67
    • /
    • 2010
  • Specific yield is an essential parameter of the water table fluctuation method for recharge calculation. Specific yield is not easily estimated because of limited availability of aquifer test data and soil samples at National Groundwater Monitoring Stations in South Korea. The linear relationship between rainfall and water level rise was used to estimate the specific yields of aquifer for 34 shallow monitoring wells which were grouped into three clusters. In the case of Cluster-1 and Cluster-2, this method was not applicable because of low cross correlation between rainfall and water level rise and also a long lag time of water level rise to rainfall. However, the specific yields for 19 monitoring wells belonging to Cluster-3, which have relatively high cross correlation and short lag time, within 2 days after rainfall, range from 0.06 to 0.27 with mean value of 0.17. These values are within the general range for sand and gravel sediments and similar to those from aquifer test data. A detailed field survey is required to identify monitoring sites that are not greatly affected by pumping, stream flow, evapotranspiration, or delayed response of water levels to rainfall, because these factors may cause overestimation of specific yield estimates.

Structural Behavior of Composite Basement Wall According to Shear Span-to-Depth Ratio and FE Analysis Considering the Condition of Contact Surface (전단경간비에 따른 합성지하벽의 거동과 접촉면의 조건을 고려한 유한요소 해석)

  • Seo, Soo Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.6
    • /
    • pp.118-126
    • /
    • 2011
  • The objective of this paper is to study the structural behavior of Composite Basement Wall (CBW) according to shear span-to-depth ratio through an experiment and predict the nonlinear behavior of CBW by using ADINA program widely has been being used for FE analysis. Especially, this study focuses on the part of CBW in which the Reinforced Concrete (RC) is under compression stress; At the region of CBW around each floor, RC part stresses by compressive force when lateral press by soil acts on the wall. The contact condition between RC wall and steel (H-Pile) including stud connector is main factor in the analysis since it governs overall structural behavior. In order to understand the structural behavior of CBW whose RC part is under compressive stress, an experimental work and finite element analysis were performed. Main parameter in the test is shear span-to-depth ratio. For simplicity in analysis, reinforcements were not modeled as a seperated element but idealized as smeared to concrete. All elements were modeled to have bi-linear relation of material properties. Three type of contact conditions such as All Generate Option (AGO), Same Element Group Option with Tie(SEGO-T) and Same Element Group Option with Not tie(SEGO-NT) were considered in the analysis. For each analysis, the stress flow and concentration were reviewed and analysis result was compared to test one. From the test result, CBW represented ductile behavior by contribution of steel member even if it had short shear span-to-depth ration which is close to "1". The global composite behavior of CBW whose concrete wall was under compressive stress could be predicted by using contact element in ADINA program. Especially, the modeling by using AGO and SEGO-T showed more close relation on comparing with test result.

Effectiveness of multi-mode surface wave inversion in shallow engineering site investigations (토목관련 천부층 조사에서 다중 모드 표면파 역산의 효과)

  • Feng Shaokong;Sugiyama Takeshi;Yamanaka Hiroaki
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.26-33
    • /
    • 2005
  • Inversion of multi-mode surface-wave phase velocity for shallow engineering site investigation has received much attention in recent years. A sensitivity analysis and inversion of both synthetic and field data demonstrates the greater effectiveness of this method over employing the fundamental mode alone. Perturbation of thickness and shear-wave velocity parameters in multi-modal Rayleigh wave phase velocities revealed that the sensitivities of higher modes: (a) concentrate in different frequency bands, and (b) are greater than the fundamental mode for deeper parameters. These observations suggest that multi-mode phase velocity inversion can provide better parameter discrimination and imaging of deep structure, especially with a velocity reversal, than can inversion of fundamental mode data alone. An inversion of the theoretical phase velocities in a model with a low velocity layer at 20 m depth can only image the soft layer when the first higher mode is incorporated. This is especially important when the lowest measurable frequency is only 6 Hz. Field tests were conducted at sites surveyed by borehole and PS logging. At the first site, an array microtremor survey, often used for deep geological surveying in Japan, was used to survey the soil down to 35 m depth. At the second site, linear multichannel spreads with a sledgehammer source were recorded, for an investigation down to 12 m depth. The f-k power spectrum method was applied for dispersion analysis, and velocities up to the second higher mode were observed in each test. The multi-mode inversion results agree well with PS logs, but models estimated from the fundamental mode alone show f large underestimation of the depth to shallow soft layers below artificial fill.