• Title/Summary/Keyword: Soil Moisture Index

Search Result 287, Processing Time 0.03 seconds

Biotic and Abiotic Factors Affecting Homoharringtonine Contents of Cephalotaxus koreana Nakai (개비자나무의 homoharringtonine 함량에 영향을 미치는 생물 및 무생물적 환경인자)

  • Jung, Myung-Suk;Hyun, Jung-Oh;Lee, Uk;Baik, Eul-Sun
    • Korean Journal of Plant Resources
    • /
    • v.23 no.2
    • /
    • pp.172-178
    • /
    • 2010
  • This study was carried out to investigate abiotic and biotic environmental factors affecting homoharringtonine (HHT) contents of Cephalotaxus koreana, whereby, to provide basic information of high value-added industry production of HHT as a promising anti-cancer agent. For correlation between abiotic environmental factors (soil moisture, soil pH, habitat density and temperature) and HHT contents, the contents were highly correlated with soil moisture (0.77) and soil pH (-0.68). For multiple regression analysis of relationship between abiotic environmental factors (soil moisture and soil pH) and HHT contents, soil moisture appeared to be strongly affecting the contents relatively due to being significant at only its regression coefficient ($26.48^{***}$). For the effect of biotic environmental factors (damage index) affecting HHT contents, the contents was quadratic with equation of $H=278.23+1242D-398.87D^2$, also, damage index had strong effect on the contents. Finally, for the result of the most influencing an environmental factor on HHT contents, both damage index and soil moisture were suitable in second polynomial regression, also, damage index ($R^2=0.73^{***}$) was turned out to be more influencing factor than soil moisture ($R^2=0.67^{**}$) on HHT contents relatively. Therefore, we predict that HHT contents in the trees of Cephalotaxus koreana is produced as a chemical defense mechanism triggered by a stress-related damage of fungi or insects.

Assessment of Upland Drought Using Soil Moisture Based on the Water Balance Analysis (물수지 기반 지역별 토양수분을 활용한 밭가뭄 평가)

  • Jeon, Min-Gi;Nam, Won-Ho;Yang, Mi-Hye;Mun, Young-Sik;Hong, Eun-Mi;Ok, Jung-Hun;Hwang, Seonah;Hur, Seung-Oh
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.5
    • /
    • pp.1-11
    • /
    • 2021
  • Soil moisture plays a critical role in hydrological processes, land-atmosphere interactions and climate variability. It can limit vegetation growth as well as infiltration of rainfall and therefore very important for agriculture sector and food protection. Recently, due to the increased damage from drought caused by climate change, there is a frequent occurrence of shortage of agricultural water, making it difficult to supply and manage stable agricultural water. Efficient water management is necessary to reduce drought damage, and soil moisture management is important in case of upland crops. In this study, soil moisture was calculated based on the water balance model, and the suitability of soil moisture data was verified through the application. The regional soil moisture was calculated based on the meteorological data collected by the meteorological station, and applied the Runs theory. We analyzed the spatiotemporal variability of soil moisture and drought impacts, and analyzed the correlation between actual drought impacts and drought damage through correlation analysis of Standardized Precipitation Index (SPI). The soil moisture steadily decreased and increased until the rainy season, while the drought size steadily increased and decreased until the rainy season. The regional magnitude of the drought was large in Gyeonggi-do and Gyeongsang-do, and in winter, severe drought occurred in areas of Gangwon-do. As a result of comparative analysis with actual drought events, it was confirmed that there is a high correlation with SPI by each time scale drought events with a correlation coefficient.

Analysis of Regional Antecedent Wetness Conditions Using Remotely Sensed Soil Moisture and Point Scale Rainfall Data (위성토양수분과 지점강우량을 이용한 지역 선행습윤조건 분석)

  • Sunwoo, Wooyeon;Kim, Daeun;Hwang, Seokhwan;Choi, Minha
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.5
    • /
    • pp.587-596
    • /
    • 2014
  • Soil moisture is one of the most important interests in hydrological response and the interaction between the land surface and atmosphere. Estimation of Antecedent Wetness Conditions (AWC) which is soil moisture condition prior to a rainfall in the basin should be considered for rainfall-runoff prediction. In this study, Soil Wetness Index (SWI), Antecedent Precipitation Index ($API_5$), remotely sensed Soil Moisture ($SM_{rs}$), and 5 days ground Soil Moisture ($SM_{g5}$) were selected to estimate the AWC at four study area in the Korean Peninsula. The remotely sensed soil moisture data were taken from the AMSR-E soil moisture archive. The maximum potential retention ($S_{obs}$) was obtained from direct runoff and rainfall using Soil Conservation Service-Curve Number (SCS-CN) method by rainfall data of 2011 for each study area. Results showed the great correlations between the maximum potential retention and SWI with a mean correlation coefficient which is equal to -0.73. The results of time length representing the time scale of soil moisture showed a gap from region to region. It was due to the differences of soil types and the characteristics of study area. Since the remotely sensed soil moisture has been proved as reasonable hydrological variables to predict a wetness in the basin, it should be continuously monitored.

Evaluation of Compaction Quality using High-resolution Terrain Factor and Soil Moisture (고해상 지형정보와 토양수분을 활용한 다짐도 평가)

  • Kim, Sung-Wook;Go, Daehong;Lee, Yeong-Jae;Choi, Eun-Kyeong;Kim, Jin-Young;Kim, Ji-Sun;Cho, Jin-Woo
    • Journal of Environmental Science International
    • /
    • v.31 no.10
    • /
    • pp.869-881
    • /
    • 2022
  • In this study, a field study was conducted to investigate the relationship between high-resolution remote images and the volumetric moisture, and the number of compaction. Changes in the shape of the surface and soil moisture content were observed and correlated with the number of compactions using roller equipment. As the compaction is repeated, the surface is flattened and the terrain curvature decreases and converges to zero. In particular, the tangential curvature changes as the number of compactions increase. Due to soil compaction, the vegetation index changed from a positive to a negative value, and most of the test site area was homogenized with a negative index. This suggests a decrease in porosity and an increase in volumetric water content associated with increasing soil compaction. Soil moisture, measured using a frequency domain reflectometry(FDR) sensor, tends to increase proportionately with the number of vibration compactions, but the correlation between the number of compactions and soil moisture is unclear. This study suggests that while it is necessary to consider the reproducibility of the experiments performed, the compaction quality of the soil can be evaluated using high-resolution terrain factors and soil moisture.

The Resolution of the Digital Terrain Index for the Prediction of Soil Moisture (토양수분 예측을 위한 수치지형 인자와 격자 크기에 대한 연구)

  • Han, Ji-Young;Kim, Sang-Hyun;Kim, Nam-Won
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.2
    • /
    • pp.251-261
    • /
    • 2003
  • The resolution issue of various soil moisture prediction parameters such as wetness index and curvatures is addressed. The sensitivities of various index are discussed on the base of the statistical aspects. The statistical analysis of three flow determination algorithms on the DEM is performed. The upslope area associated with SFD algorithm appear to more sensitive than the parameters of the other algorithms(MFD, DEMON). The wetness index shows relatively less variation both in resolution and the calculation Procedures.

A Study on the Observation of Soil Moisture Conditions and its Applied Possibility in Agriculture Using Land Surface Temperature and NDVI from Landsat-8 OLI/TIRS Satellite Image (Landsat-8 OLI/TIRS 위성영상의 지표온도와 식생지수를 이용한 토양의 수분 상태 관측 및 농업분야에의 응용 가능성 연구)

  • Chae, Sung-Ho;Park, Sung-Hwan;Lee, Moung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_1
    • /
    • pp.931-946
    • /
    • 2017
  • The purpose of this study is to observe and analyze soil moisture conditions with high resolution and to evaluate its application feasibility to agriculture. For this purpose, we used three Landsat-8 OLI (Operational Land Imager)/TIRS (Thermal Infrared Sensor) optical and thermal infrared satellite images taken from May to June 2015, 2016, and 2017, including the rural areas of Jeollabuk-do, where 46% of agricultural areas are located. The soil moisture conditions at each date in the study area can be effectively obtained through the SPI (Standardized Precipitation Index)3 drought index, and each image has near normal, moderately wet, and moderately dry soil moisture conditions. The temperature vegetation dryness index (TVDI) was calculated to observe the soil moisture status from the Landsat-8 OLI/TIRS images with different soil moisture conditions and to compare and analyze the soil moisture conditions obtained from the SPI3 drought index. TVDI is estimated from the relationship between LST (Land Surface Temperature) and NDVI (Normalized Difference Vegetation Index) calculated from Landsat-8 OLI/TIRS satellite images. The maximum/minimum values of LST according to NDVI are extracted from the distribution of pixels in the feature space of LST-NDVI, and the Dry/Wet edges of LST according to NDVI can be determined by linear regression analysis. The TVDI value is obtained by calculating the ratio of the LST value between the two edges. We classified the relative soil moisture conditions from the TVDI values into five stages: very wet, wet, normal, dry, and very dry and compared to the soil moisture conditions obtained from SPI3. Due to the rice-planing season from May to June, 62% of the whole images were classified as wet and very wet due to paddy field areas which are the largest proportions in the image. Also, the pixels classified as normal were analyzed because of the influence of the field area in the image. The TVDI classification results for the whole image roughly corresponded to the SPI3 soil moisture condition, but they did not correspond to the subdivision results which are very dry, wet, and very wet. In addition, after extracting and classifying agricultural areas of paddy field and field, the paddy field area did not correspond to the SPI3 drought index in the very dry, normal and very wet classification results, and the field area did not correspond to the SPI3 drought index in the normal classification. This is considered to be a problem in Dry/Wet edge estimation due to outlier such as extremely dry bare soil and very wet paddy field area, water, cloud and mountain topography effects (shadow). However, in the agricultural area, especially the field area, in May to June, it was possible to effectively observe the soil moisture conditions as a subdivision. It is expected that the application of this method will be possible by observing the temporal and spatial changes of the soil moisture status in the agricultural area using the optical satellite with high spatial resolution and forecasting the agricultural production.

Estimation of soil moisture based on Sentinel-1 SAR data: Assessment of soil moisture estimation in different vegetation condition (Sentinel-1 SAR 토양수분 산정 연구: 식생에 따른 토양수분 모의평가)

  • Cho, Seongkeun;Jeong, Jaehwan;Lee, Seulchan;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.2
    • /
    • pp.81-91
    • /
    • 2021
  • Synthetic Apreture Radar (SAR) is attracting attentions with its possibility of producing high resolution data that can be used for soil moisture estimation. High resolution soil moisture data enables more specific observation of soil moisture than existing soil moisture products from other satellites. It can also be used for studies of wildfire, landslide, and flood. The SAR based soil moisture estimation should be conducted considering vegetation, which affects backscattering signals from the SAR sensor. In this study, a SAR based soil moisture estimation at regions covered with various vegetation types on the middle area of Korea (Cropland, Grassland, Forest) is conducted. The representative backscattering model, Water Cloud Model (WCM) is used for soil moisture estimation over vegetated areas. Radar Vegetation Index (RVI) and in-situ soil moisture data are used as input factors for the model. Total 6 study areas are selected for 3 vegetation types according to land cover classification with 2 sites per each vegetation type. Soil moisture evaluation result shows that the accuracy of each site stands out in the order of grassland, forest, and cropland. Forested area shows correlation coefficient value higher than 0.5 even with the most dense vegetation, while cropland shows correlation coefficient value lower than 0.3. The proper vegetation and soil moisture conditions for SAR based soil moisture estimation are suggested through the results of the study. Future study, which utilizes additional ancillary vegetation data (vegetation height, vegetation type) is thought to be necessary.

Development of Agricultural Drought Assessment Approach Using SMAP Soil Moisture Footprints (SMAP 토양수분 이미지를 이용한 농업가뭄 평가 기법 개발)

  • Shin, Yongchul;Lee, Taehwa;Kim, Sangwoo;Lee, Hyun-Woo;Choi, Kyung-Sook;Kim, Jonggun;Lee, Giha
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.1
    • /
    • pp.57-70
    • /
    • 2017
  • In this study, we evaluated daily root zone soil moisture dynamics and agricultural drought using a near-surface soil moisture data assimilation scheme with Soil Moisture Active & Passive (SMAP, $3km{\times}3km$) soil moisture footprints under different hydro-climate conditions. Satellite-based LANDSAT and MODIS image footprints were converted to spatially-distributed soil moisture estimates based on the regression model, and the converted soil moisture distributions were used for assessing uncertainties and applicability of SMAP data at fields. In order to overcome drawbacks of the discontinuity of SMAP data at the spatio-temporal scales, the data assimilation was applied to SMAP for estimating daily soil moisture dynamics at the spatial domain. Then, daily soil moisture values were used to estimate weekly agricultural drought based on the Soil Moisture Deficit Index (SMDI). The Yongdam-dam and Soyan river-dam watersheds were selected for validating our proposed approach. As a results, the MODIS/SMAP soil moisture values were relatively overestimated compared to those of the TDR-based measurements and LANDSAT data. When we applied the data assimilation scheme to SMAP, uncertainties were highly reduced compared to the TDR measurements. The estimated daily root zone soil moisture dynamics and agricultural drought from SMAP showed the variability at the sptio-temporal scales indicating that soil moisture values are influenced by not only the precipitation, but also the land surface characteristics. These findings can be useful for establishing efficient water management plans in hydrology and agricultural drought.

Assessment of Agricultural Drought Using Satellite-based TRMM/GPM Precipitation Images: At the Province of Chungcheongbuk-do (인공위성 기반 TRMM/GPM 강우 이미지를 이용한 농업 가뭄 평가: 충청북도 지역을 중심으로)

  • Lee, Taehwa;Kim, Sangwoo;Jung, Younghun;Shin, Yongchul
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.4
    • /
    • pp.73-82
    • /
    • 2018
  • In this study, we assessed meteorological and agricultural drought based on the SPI(Standardized Precipitation Index), SMP(Soil Moisture Percentile), and SMDI(Soil Moisture Deficit Index) indices using satellite-based TRMM(Tropical Rainfall Measuring Mission)/GPM(Global Precipitation Measurement) images at the province of Chungcheongbuk-do. The long-term(2000-2015) TRMM/GPM precipitation data were used to estimate the SPI values. Then, we estimated the spatially-/temporally-distributed soil moisture values based on the near-surface soil moisture data assimilation scheme using the TRMM/GPM and MODIS(MODerate resolution Imaging Spectroradiometer) images. Overall, the SPI value was significantly affected by the precipitation at the study region, while both the precipitation and land surface condition have influences on the SMP and SMDI values. But the SMP index showed the relatively extreme wet/dry conditions compared to SPI and SMDI, because SMP only calculates the percentage of current wetness condition without considering the impacts of past wetness condition. Considering that different drought indices have their own advantages and disadvantages, the SMDI index could be useful for evaluating agricultural drought and establishing efficient water management plans.

Development of Satellite-based Drought Indices for Assessing Wildfire Risk (산불발생위험 추정을 위한 위성기반 가뭄지수 개발)

  • Park, Sumin;Son, Bokyung;Im, Jungho;Lee, Jaese;Lee, Byungdoo;Kwon, ChunGeun
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_3
    • /
    • pp.1285-1298
    • /
    • 2019
  • Drought is one of the factors that can cause wildfires. Drought is related to not only the occurrence of wildfires but also their frequency, extent and severity. In South Korea, most wildfires occur in dry seasons (i.e. spring and autumn), which are highly correlated to drought events. In this study, we examined the relationship between wildfire occurrence and drought factors, and developed satellite-based new drought indices for assessing wildfire risk over South Korea. Drought factors used in this study were high-resolution downscaled soil moisture, Normalized Different Water Index (NDWI), Normalized Multi-band Drought Index (NMDI), Normalized Different Drought Index (NDDI), Temperature Condition Index (TCI), Precipitation Condition Index (PCI) and Vegetation Condition Index (VCI). Drought indices were then proposed through weighted linear combination and one-class support vector machine (One-class SVM) using the drought factors. We found that most drought factors, in particular, soil moisture, NDWI, and PCI were linked well to wildfire occurrence. The validation results using wildfire cases in 2018 showed that all five linear combinations produced consistently good performance (> 88% in occurrence match). In particular, the combination of soil moisture and NDWI, and the combination of soil moisture, NDWI, and precipitation were found to be appropriate for representing wildfire risk.