DOI QR코드

DOI QR Code

Assessment of Upland Drought Using Soil Moisture Based on the Water Balance Analysis

물수지 기반 지역별 토양수분을 활용한 밭가뭄 평가

  • Jeon, Min-Gi (Department of Convergence of Information and Communication Engineering, Hankyong National University) ;
  • Nam, Won-Ho (School of Social Safety and Systems Engineering, Institute of Agricultural Environmental Science, National Agricultural Water Research Center, Hankyong National University) ;
  • Yang, Mi-Hye (Department of Convergence of Information and Communication Engineering, Hankyong National University) ;
  • Mun, Young-Sik (National Agricultural Water Research Center, Hankyong National University) ;
  • Hong, Eun-Mi (School of Natural Resources and Environmental Science, Kangwon National University) ;
  • Ok, Jung-Hun (Divison of Soil and Fertilizer, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Hwang, Seonah (Divison of Soil and Fertilizer, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Hur, Seung-Oh (Divison of Soil and Fertilizer, National Institute of Agricultural Sciences, Rural Development Administration)
  • Received : 2021.04.26
  • Accepted : 2021.06.21
  • Published : 2021.09.30

Abstract

Soil moisture plays a critical role in hydrological processes, land-atmosphere interactions and climate variability. It can limit vegetation growth as well as infiltration of rainfall and therefore very important for agriculture sector and food protection. Recently, due to the increased damage from drought caused by climate change, there is a frequent occurrence of shortage of agricultural water, making it difficult to supply and manage stable agricultural water. Efficient water management is necessary to reduce drought damage, and soil moisture management is important in case of upland crops. In this study, soil moisture was calculated based on the water balance model, and the suitability of soil moisture data was verified through the application. The regional soil moisture was calculated based on the meteorological data collected by the meteorological station, and applied the Runs theory. We analyzed the spatiotemporal variability of soil moisture and drought impacts, and analyzed the correlation between actual drought impacts and drought damage through correlation analysis of Standardized Precipitation Index (SPI). The soil moisture steadily decreased and increased until the rainy season, while the drought size steadily increased and decreased until the rainy season. The regional magnitude of the drought was large in Gyeonggi-do and Gyeongsang-do, and in winter, severe drought occurred in areas of Gangwon-do. As a result of comparative analysis with actual drought events, it was confirmed that there is a high correlation with SPI by each time scale drought events with a correlation coefficient.

Keywords

Acknowledgement

본 연구는 농촌진흥청의 공동연구사업의 연구비지원 (과제번호: PJ014813022020)에 의해 수행되었습니다.

References

  1. Berg, A., and J. Sheffield, 2018. Soil moisture-evapotranspiration coupling in CMIP5 models: Relationship with simulated climate and projections. Journal of Climate 31(12): 4865-4878. doi:10.1175/JCLI-D-17-0757.1.
  2. Edwards, D. C., and T. B. McKee, 1997. Characteristics of 20th century drought in the United States at multiple time scales. 97-2. Fort Collins, Colorado Department of Atmospheric Science, Colorado State University.
  3. Hayes, M. J., M. D. Svoboda, D. A. Wilhite, and O. V. Vanyarkho, 1999. Monitoring the 1996 drought using the standardized precipitation index. Bulletin of the American Meteorological Society 80: 429-438. doi:10.1175/1520-0477(1999)080<0429:MTDUTS>2.0.CO;2.
  4. Hong, E. M., W. H. Nam, and J. Y. Choi, 2015. Climate change impacts on agricultural drought for major upland crops using soil moisture model-Focused on the Jeollanamdo. Journal of the Korean Society of Agricultural Engineers 57(3): 65-76 (in Korean). doi:10.5389/KSAE.2015.57.3.065.
  5. Hong, E. M., W. H. Nam, J. Y. Choi, and Y. A. Pachepsky, 2016. Projected irrigation requirements for upland crops using soil moisture model under climate change in South Korea. Agricultural Water Management 165: 163-180. doi:10.1016/j.agwat.2015.12.003.
  6. Hunt, E. D., K. G. Hubbard, D. A. Wilhite, T. J. Arkebauer, and A. L. Dutcher, 2009. The development and evaluation of a soil moisture index. International Journal of Climatology 29: 747-759. doi:10.1002/joc.1749.
  7. Hur, S. O., Y. G. Son, B. K. Hyun, K. S. Sin, T. K. Oh, and J. K. Kim, 2014. Verification on PTF (Pedo-Transfer Function) estimating soil water retention based on soil properties. Korean Journal of Agricultural Science 41(4):393-400 (in Korean). doi:10.7744/cnujas.2014.41.4.391.
  8. Hwang, S. W., Y. G. Her, and S. W. Chang, 2013. Uncertainty in regional climate change impact assessment using bias-correction technique for future climate scenarios. Journal of the Korean Society of Agricultural Engineers 55(4): 95-106 (in Korean). doi:10.5389/KSAE.2013.55.4.095.
  9. Jang, Y. B, I. H. Jang, and Y. C. Choe, 2020. Prediction of soil moisture with open source weather data and machine learning algorithms. Korean Journal of Agricultural and Forest Meteorology 22(1): 1-12 (in Korean). doi:10.5532/KJAFM.2020.22.1.1.
  10. Jeon, M. G., W. H. Nam, E. M. Hong, S. Hwang, J. Ok, H. Cho, K. H. Han, K. H. Jung, Y. S. Zhang, and S. Y. Hong, 2019. Comparison of reference evapotranspiration estimation methods with limited data in South Korea. Korean Journal of Agricultural Science 46(1): 137-149 (in Korean). doi:10.7744/kjoas.20190004.
  11. Jeon, M. G., W. H. Nam, H. J. Lee, E. M. Hong, S. Hwang, and S. O. Hur, 2021. Drought risk assessment for upland crops using satellite-derived evapotranspiration and soil available water capacity. Journal of the Korean Society of Hazard Mitigation 21(1): 25-33 (in Korean). doi:10.9798/KOSHAM.2021.21.1.25.
  12. Jun, S. M., E. S. Chung, S. H. Lee, and Y. Kim, 2013. Development and application of robust decision making technique considering uncertainty of climatic change scenarios. Journal of Korea Water Resources Association 46(9): 897-907 (in Korean). doi:10.3741/JKWRA.2013.46.9.897.
  13. Kang, M. G., K. M. Lee, I. H. Ko, and C. Y. Jeong, 2008. Development of a integranted indicator system for evaluating the state of watershed management in the context of river basin management using factor analysis. Journal of Water Resource Association 44(3): 277-291 (in Korean). doi:10.3741/JKWRA.2008.41.3.277.
  14. Kim, O. K., J. Y. Choi, M. W. Jang, S. H. Yoo, W. H. Nam, J. H. Lee, and J. K. Noh, 2006. Watershed scale drought assessment using soil moisture index. Journal of the Korean Society of Agricultural Engineers 48(6): 3-13 (in Korean). doi:10.5389/KSAE.2006.48.6.003.
  15. Kim, S., T. Lee, and Y. Shin, 2019. Estimation of high-resolution soil moisture based on Sentinel-1A/B SAR sensors. Journal of the Korean Society of Agricultural Engineers 61(5): 89-99 (in Korean). doi:10.5389/KSAE.2019.61.5.089.
  16. Lee, H. J., W. H. Nam, D. H. Yoon, E. M. Hong, D. E. Kim, M. D. Svoboda, T. Tadesse, and B. D. Wardlow, 2019. Satellite-based Evaporative Stress Index (ESI) as an indicator of agricultural drought in North Korea. Journal of the Korean Society of Agricultural Engineers 61(3): 1-14 (in Korean). doi:10.5389/KSAE.2019.61.3.001.
  17. Lee, T., S. Kim, and Y. Shin, 2020. Spatio-temporal resolution analysis based on Landsat/AMSR2 soil moisture. Journal of the Korean Society of Agricultural Engineers 62(1): 51-60 (in Korean). doi:10.5389/KSAE.2020.62.1.051.
  18. Mckee, T. B., N. J. Doesken, and J. Kleist, 1993. The relationship of drought frequency and duration to time scales. American Meteorological Society 179-184.
  19. Moon, G. W., J. Y. Yoo, and T. W. Kim, 2014. Comparing calculation techniques for effective rainfalls using NRCS-CN method: Focused on introducing weighted average and slope-based CN. Journal of the Korean Society of Civil Engineers 34(4): 1171-1180 (in Korean). doi:10.12652/ksce.2014.34.4.1171.
  20. Mun, Y. S., W. H. Nam, M. G. Jeon, T. Kim, E. M. Hong, M. J. Hayes, and T. Tadesse, 2019. Application of meteorological drought index using Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) based on global satellite-assisted precipitation products in Korea. Journal of the Korean Society of Agricultural Engineers 61(2): 1-11 (in Korean). doi:10.5389/KSAE.2019.61.2.001.
  21. Mun, Y. S., W. H. Nam, M. G. Jeon, H. J. Kim, K. Kang, J. C. Lee, T. H. Ha, and K. Lee, 2020. Evaluation of regional drought vulnerability assessment based on agricultural water and reservoirs. Journal of the Korean Society of Agricultural Engineers 62(2): 97-109 (in Korean). doi:10.5389/KSAE.2020.62.2.97.
  22. Nam, W. H., S. H. Yoo, J. Y. C hoi, and M. W. Jang, 2008. Analysis of autumn drought using Soil Moisture Index. Journal of Korean National Committee on Irrigation and Drainage 15(1): 21-33 (in Korean).
  23. Nam, W. H., J. Y. C hoi, S. H. Yoo, and B. A. Engel, 2012. A real-time online drought broadcast system for monitoring soil moisture index. KSCE Journal of Civil Engineering 16(3): 357-365. doi:10.1007/s12205-012-1357-3.
  24. Nam, W. H., E. M. Hong, M. W. Jang, and J. Y. Choi, 2014. Projection of consumptive use and irrigation water for major upland crops using soil moisture model under climate change. Journal of the Korean Society of Agricultural Engineers 56(5): 77-87 (in Korean). doi:10.5389/KSAE.2014.56.5.077.
  25. Nam, W. H., M. J. Hayes, M. D. Svoboda, T. Tadesse, and D. A. Wilhite, 2015. Drought hazard assessment in the context of climate change for South Korea. Agricultural Water Management 160: 106-117. doi:10.1016/j.agwat.2015.06.029.
  26. Ruosteenoja, K., T. Markkanen, A. Venalainen, P. Raisanen, and H. Peltola, 2018. Seasonal soil moisture and drought occurrence in Europe in CMIP5 projections for the 21st century. Climate Dynamics 50: 1177-1192. doi:10.1007/s00382-017-3671-4.
  27. Soong, J. L., C. L. Phillips, C. Ledna, C. D. Koven, and M. S. Torn, 2020. CMIP5 models predict rapid and deep soil warming over the 21st century. Journal of Geophysical Research: Biogeosciences 125: e2019JG005266. doi:10.1029/2019JG005266.
  28. Sung, J. H., H. S. Kang, S. H. Park, C. H. Cho, D. H. Bae, and Y. O. Kim, 2012. Projection of extreme precipitation at the end of 21st century over South Korea based Representative Concentration Pathways (RCP). Atmosphere 22(2): 221-231 (in Korean). doi:10.14191/Atmos.2012.22.2.221.
  29. Svoboda, M., D. LeComte, M. Hayes, R. Heim, K. Gleason, J. Angel, B. Rippey, R. Tinker, M. Palecki, D. Stooksbury, D. Miskus, and S. Stephens, 2002. The drought monitor. Bulletin of the American Meteorological Society 83(8):1181-1190. doi:10.1175/1520-0477-83.8.1181.
  30. U.S. Soil Conservation Service (US SCS), 1973. A method for estimating volume and rate of runoff in small watersheds. Technical paper No. 149. Washington D. C., USDA-SCS.
  31. van der Linden, E. C., R. J. Haarsma, and G. van der Schrier, 2019. Impact of climate model resolution on soil moisture projections in central-western Europe. Hydrology and Earth System Sciences 23: 191-206. doi:10.5194/hess23-191-2019.
  32. Yoon, D. H., W. H. Nam, H. J. Lee, E. M. Hong, S. Feng, B. D. Wardlow, T. Tadesse, M. D. Svoboda, M. J. Hayes, and D. E. Kim, 2020. Agricultural drought assessment in East Asia using satellite-based indices. Remote Sensing 12(3): 444. doi:10.3390/rs12030444.
  33. Yuan, S., and S. M. Quiring, 2017. Evaluation of soil moisture in CMIP5 simulations over the contiguous United States using in situ and satellite observations. Hydrology and Earth System Sciences 21: 2203-2218. doi:10.5194/hess-21-2203-2017.