• Title/Summary/Keyword: Soil Improvement

Search Result 1,317, Processing Time 0.03 seconds

Discharge Capacity of PBD and Deep Soft Soil Improvement (PBD의 배수특성과 대심도 지반개량)

  • 구본효
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.585-592
    • /
    • 2002
  • Discharge capacity of PBD is the most important factor of specification items to control any product of PBD. There is no standard specification for the PBD. Because the degree of discharge capacity is related to well resistance, install depth, maximum strain etc in the field. Discharge capacity test of PBD, permeability test of filter are conducted using PBD materials used in Korea. This paper proposes the critical discharge capacity for deep PBD under condition of non well resistance based upon their test and theoretical calculation. It was found that discharge capacity more than about 10 ㎤/sec is enough to undergo designing of deep PBD without well resistance.

  • PDF

The Soil Improvement and Plant Growth on the Newly-Reclaimed Sloped Land -II. Effects of Soil Improvement on the Changes of Soil Physical Properties and Silage Corn Growth (신개간경사지(新開墾傾斜地) 토양개량(土壤改良)과 작물생육(作物生育)에 관(關)한 연구(硏究) -II. 토양개량(土壤改良)이 물리성(物理性) 개선(改善)과 청예용(靑刈用)옥수수 생육(生育)에 미치는 영향(影響))

  • Hur, Bong-Koo;Kim, Moo-Sung;Jo, In-Sang;Um, Ki-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.22 no.2
    • /
    • pp.86-92
    • /
    • 1989
  • This experiment was conducted to find out the effect of soil improvement on the changes of soil physical properties and the silage yield of corn in the newly-reclaimed sloped land. Corn (Suweon 19) was cultivated under the six different treatments at Songjeong loam, 20 percent slope, during 1985 to 1987 and various soil physical properties and silage yield were investigated. Growing Degree Days of corn during the growing season were $820.6^{\circ}C$ in 1985, $810.2^{\circ}C$ in 1986, and $812.4^{\circ}C$ in 1987. The changes of soil bulk density were high variances by different treatments in 1st year, but sluggish in 2nd year. In 3rd year, the control plot was the highest, but the integrated improvement plot was the lowest than the other plots. Soil hardness was reduced in subsoiling and integrated improvement plot with deep plowing, and water stable aggregates and air permeability were higher in these plots. Moisture retention was no differences between treatments. Dry matter yield of corn was decreased in the 2nd year than the 1st year, but increased in the 3rd year. Increasing ratio of yield was in the order of integrated improvement > subsoiling > lime > phosphate > compost > control plot. Correlation among the dry matter yield and soil physical properties were significant at 1%, but moisture retention of soil was not significant at 5%.

  • PDF

Studies on Symbiotic Nitrogen Fixation in Soybeans -III. Effects of Soil Improvement on N2 Fixation and Yield of Soybean Inoculated with Rhizobium japonicum in Newly Reclaimed Upland Soil (대두근류균(大豆根瘤菌)의 질소고정(窒素固定)에 관한 연구 -III. 신개간지(新開墾地) 토양에서 근류균(根瘤菌)의 접종(接種) 및 개량제시용이 질소고정(窒素固定)과 대두수량에 미치는 효과)

  • Ryu, Jin-Chang;Lee, Sang-Kyu;Lee, Hyuk-Ho;Hong, Chong-Woon;Cho, Moo-Je
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.2
    • /
    • pp.188-194
    • /
    • 1983
  • A Pot experiment was conducted to find out the effects of NPK fertilizers and soil amendments on the symbiotic nitrogen fixation and yield of soybean inoculated with Rhizobium japonicum in newly reclaimed upland soil with very low fertility. The results are summarized as follows; 1. Application of PK fertilizer and soil amendments such as lime, and rice straw in combination with micronutrients (Zn, B, Mo) increased the amounts of symbiotic $N_2$ fixation in soybean. 2. The inoculation of Rhizobium japonicum with application of soil amendments increased the yield of soybean by 4% to 10% due to enhanced $N_2$ fixation. 3. In case of improvement of newly reclaimed hilly soil in order to obtain the high yield of soybean, simutaneous application of soil amendments with inoculation of R. janconican should the highest yield.

  • PDF

Effects of Alkali-Activated Soil Stabilizer Binder Based on Recycling BP By-Products on Soil Improvement (BP부산물을 재활용한 알칼리활성화 지반개량재의 지반개량효과에 관한 연구)

  • Lee, Yeong-Won;Kang, Suk-Pyo;Kim, Jae-Hwan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.2
    • /
    • pp.158-165
    • /
    • 2014
  • The enormous quantity of 'Bayer-Process by-products' (BP by-products) discharged by industries producing alumina from bauxite represents an environmental and economical problem. As it is mainly composed of $Fe_2O_3$, $Al_2O_3$, $SiO_2$, CaO and $Na_2O$, it is thought that using BP by-products as a construction material is an effective way to consume such a large quantity of alkaline waste. In this study, This study evaluates the effect of alkali-activated binder based on recycling BP by-products on soil improvement through the evaluation of slope stability and seepage flow numerical analysis. The results of analysis of ground slope safety at dry season and wet season meet standard (Ministry of Land, Infrastructure and Transport, 2006) Especially, when wet season, the ground used soil improving material meet standard, while the ground used soil-nailing method doesn't. Also, permeability coefficient of improved soil is smaller than that of natural soil and saturation depth of reinforced ground surface with improve soil is lower than that of natural soil.

Evaluation of Applicability of CMD-SOIL Recycled Resources as Ground Improvement Material for Deep Mixing Method (심층혼합공법용 지반개량재로서 순환자원을 재활용한 CMD-SOIL의 적용성 평가)

  • Ham, Tae-Gew;Seo, Se-Gwan;Cho, Dae-Sung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.43-52
    • /
    • 2021
  • As port development in soft ground is actively promoted for international logistics and transportation, the Deep Mixing Method (DMM) is continuously applied to form an improved column body directly in the ground by mixing cement with soil to secure the stability of the structure. However, in the case of cement, there is a problem of emitting a lot of greenhouse gases during the production process, so the development and use of new alternative materials are socially required to achieve the national goal of carbon neutrality. Accordingly, in this study, CMD-SOIL, developed to induce a hardening reaction similar to cement by recycling recycled resources, was used as a ground improvement material for the DMM. In addition, it was attempted to determine the possibility of replacing cement by conducting on-site test construction and evaluating applicability. As a result of the study, the compressive strength of CMD-SOIL compared to the design reference strength was 1.46 to 2.64 times higher in the field mixing test and 1.2 to 5.03 times higher than in the confirmed boring. In addition, the ratio (λ) of the compressive strength in the field to the design reference strength was 0.63 to 1.14, which was similar to the previous research results. Therefore, in the case of CMD-SOIL, it is possible to express the compressive strength necessary to secure stability, and there is no difference in applicability compared to existing materials such as ordinary portland cement and blast furnace slag cement, so it was analyzed that it could be used as a ground improvement material for the DMM.

Application of Recycled Gypsum on Alkali Soil for Improving Agricultural Productivity in China

  • Akio, Tokuumi;Tsureyasu, Yanagi;Sun, Yi;Gao, Yushan;Zhao, Xiezhe
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.102-105
    • /
    • 2001
  • Gypsum has been known as a prominent material for improving alkali soil, and this material can be supplied easily in large scale by recycling waste gypsum plasterboard from construction and demolition sites in advanced countries. In April 2000, in the part of western Jilin Province in China, where alkali soil spread vastly, we conducted a cultivating experiment of corn and rice after treating with granule recycled waste gypsum at six alkali soil fields which total area were 14000$m^2$. We confirmed that pH of soil decreased in a short period and alkali soil changed soft a desirable condition for farm work, and furthermore, gypsum caused to accelerate the growth of a plant, both corn and rice.

  • PDF

The Theoretical Analyses of the Soil Erosion and Conservation 2. The Theoretical Expresion of Erosion Tolerance for the Soil Conservation (토양의 침식과 보존에 관한 이론적 분석 2. 토양침식의 내성에 관한 이론)

  • 장남기
    • Asian Journal of Turfgrass Science
    • /
    • v.10 no.1
    • /
    • pp.31-40
    • /
    • 1996
  • The mechanical expresion provides for the use of Soil property reserves and permanent protec-tion or improvement of soil resources in accordance with measurable standards. If the functions I (initial soil property), E (soil erosion), R (soil renewal), and M. (minimum allowable value) are assumed to be integrable in region A, erosion tolerance over a region is leaded to ${\int}_A{\int}I(m, cl, re, ch, b)dA-{\int}_A{\int}{\{\int}_{to}^{\infty}[E(w, re, c, re, ch, b, t)-R(m, ch, re, b, t)]dt}\dA{\geqq}{\int}_A{\int}M_i(m, cl, re, ch, b)dA$ were variable factors are m=parent material of soil, cl=climate, re=relief or topography, ch=soil characteristics, r=rain or water, w=wind, b=biota, and t=time.

  • PDF

Effects of Improvement of Soil Physical Property & Diagnostic Fertilization on Yield and N-Use Efficiency in Puddled-Soil Drill Seeding of Rice (토양물리성개선(土壤物理性改善) 및 진단시비(診斷施肥)가 무논골뿌림직파(直播) 벼의 질소이용효율(窒素利用效率)과 수량(收量)에 미치는 영향(影響))

  • Kang, Seung-Weon;Yoo, Chul-Hyun;Han, Sang-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.3
    • /
    • pp.254-260
    • /
    • 1999
  • This experiment was carried out to evaluate the effect of improvement of soil physical property such as deep plowing and chiseling and diagnostic application of N, P, K fetilizers. Latex Coated Urea(LCU), compost, sillicate for increasing yielding and enchancing N-use efficiency in puddled-soil drill seeding of Rice. The soil physical properties, such as bulk density, hardness and porosity were increased by deep plowing and chiseling, as well as chemical propeties were highly enhanced soil productivity due to increase the content of organic matter, available $P_2O_5$ and K as compare with control. The amount of $NH_4-N$ in soil was highly increased by diagnostic fertilization and chiseling, while recovery rate of V fertilizer was the highest at LCU 80% applied with chiseling. The rice yield increased by 23% under the diagnositic application of LCU 80% applied base with chiseling.

  • PDF

Evaluation of Remediation of Contaminated Soil Using PVDs (연직배수재를 이용한 오염도턍복원 특성 평가)

  • Shin, Eun-Chul;Park, Jeong-Jun;Roh, Jeong-Min
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1400-1407
    • /
    • 2005
  • There are a number of approaches to in situ remediation that are used at contaminated sites for removing contaminants from the contaminated zone without excavating the soil. These include soil flushing, dual phase extraction, and soil vapor extraction. Of these techniques, soil flushing is the focus of the investigation in this paper. The concept of using prefabricated vertical drains(PVDs) for remediation of contaminated sites with fine-grained soils is examined. The PVD system is used to shorten the drainage path or the groundwater flow and promote subsurface liquid movement expediting the soil flushing process. The use of PVDs in the current state of practice has been limited to soil improvement. The use of PVDs under vacuum conditions is investigated using sample soil consisting of silty sand.

  • PDF

The Estimation of Soil Runoff in the Man-dae Cheun Basin by the using RUSLE Method (RUSLE 방법을 이용한 만대천 유역의 토사유출량 산정)

  • Choi, Han-Kuy;Park, Soo-Jin;Guk, Seong-Pyo
    • Journal of Industrial Technology
    • /
    • v.30 no.B
    • /
    • pp.99-108
    • /
    • 2010
  • This study was intended to estimate the soil runoff at the basin of Mandaechun where the measure needs to be taken to deal with the increasing muddy water resulting from soil runoff during wet season and torrential rain at the high reaches of the Soyang lake where highland vegetables are cultivated and soil replacement for improvement is carried out every two to three years. The study was carried out in such a way of identifying the topographic factors using geographical spatial data from Water Management Information System (WAMIS) and ARC-VIEW program and estimating the soil runoff by rainfall frequency using Revised Universal Soil Loss Equation (RUSLE), and furthermore, evaluating the soil runoff contribution at the basin of Mandaechun based on estimate of the soil runoff by section.

  • PDF