• Title/Summary/Keyword: Soil Depth

Search Result 2,455, Processing Time 0.038 seconds

Effect of Depth-Variant Soil Properties on Shallow Failure of Slope during Rain Infiltration (깊이별 지반특성변화가 강우침투에 의한 사면표층 파괴에 미치는 영향)

  • Park, Ka-Hyun;Kim, Ji-Young;Chung, Choong-Ki;Kim, Kyung-Suk
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.6
    • /
    • pp.41-49
    • /
    • 2014
  • Intensive rainfall causes frequent slope failures at the shallow depths of slopes. Because soil layers at shallow depths of slopes usually become dense, and its permeability and soil strength vary according to depth, forensic studies and stability analyses of shallow slope failure need to consider the depth-variant soil properties. In this study, the effect of depth-variant soil properties on surface failure of slopes during rain infiltration is investigated using numerical analysis. Three different cases considering depth-variant soil properties were conducted and the results were compared. For the analysis, undisturbed soils at three different depths were sampled at actual slope failure sites and the properties including strength and permeability characteristics at each depth were obtained. Stability analysis and seepage analysis were conducted using actual rainfall records. The comparison of the results shows that analysis could lead to an erroneous conclusion according to the way of considering depth-variant soil properties. The case in which depth-variant soil properties were considered predicted similar failure times and failure shapes with the actual failure. Therefore it is recommended that the depth-variant soil properties should be considered for the analysis of shallow slope failure during rain infiltration.

Bacterial and fungal community composition across the soil depth profiles in a fallow field

  • Ko, Daegeun;Yoo, Gayoung;Yun, Seong-Taek;Jun, Seong-Chun;Chung, Haegeun
    • Journal of Ecology and Environment
    • /
    • v.41 no.9
    • /
    • pp.271-280
    • /
    • 2017
  • Background: Soil microorganisms play key roles in nutrient cycling and are distributed throughout the soil profile. Currently, there is little information about the characteristics of the microbial communities along the soil depth because most studies focus on microorganisms inhabiting the soil surface. To better understand the functions and composition of microbial communities and the biogeochemical factors that shape them at different soil depths, we analyzed microbial activities and bacterial and fungal community composition in soils up to a 120 cm depth at a fallow field located in central Korea. To examine the vertical difference of microbial activities and community composition, ${\beta}$-1,4-glucosidase, cellobiohydrolase, ${\beta}$-1,4-xylosidase, ${\beta}$-1,4-N-acetylglucosaminidase, and acid phosphatase activities were analyzed and barcoded pyrosequencing of 16S rRNA genes (bacteria) and internal transcribed spacer region (fungi) was conducted. Results: The activity of all the soil enzymes analyzed, along with soil C concentration, declined with soil depth. For example, acid phosphatase activity was $125.9({\pm}5.7({\pm}1SE))$, $30.9({\pm}0.9)$, $15.7({\pm}0.6)$, $6.7({\pm}0.9)$, and $3.3({\pm}0.3)nmol\;g^{-1}\;h^{-1}$ at 0-15, 15-30, 30-60, 60-90, and 90-120 cm soil depths, respectively. Among the bacterial groups, the abundance of Proteobacteria (38.5, 23.2, 23.3, 26.1, and 17.5% at 0-15, 15-30, 30-60, 60-90, and 90-120 cm soil depths, respectively) and Firmicutes (12.8, 11.3, 8.6, 4.3, and 0.4% at 0-15, 15-30, 30-60, 60-90, and 90-120 cm soil depths, respectively) decreased with soil depth. On the other hand, the abundance of Ascomycota (51.2, 48.6, 65.7, 46.1, and 45.7% at 15, 30, 60, 90, and 120 cm depths, respectively), a dominant fungal group at this site, showed no clear trend along the soil profile. Conclusions: Our results show that soil C availability can determine soil enzyme activity at different soil depths and that bacterial communities have a clear trend along the soil depth at this study site. These metagenomics studies, along with other studies on microbial functions, are expected to enhance our understanding on the complexity of soil microbial communities and their relationship with biogeochemical factors.

Studies on the soil freezing depth and change of moisture contents in evergreen plants upon subzero temperature in (강원도지역의 토양동결심 및 상록식물의 함수량 추이에 관한연구 (1))

  • 홍종운;허범양;원경열;임병춘;이기철;하상건
    • Asian Journal of Turfgrass Science
    • /
    • v.4 no.1
    • /
    • pp.42-48
    • /
    • 1990
  • Experiments were conducted to investigate the soil freezing depth and pattern with freezing measuring instruments during 1988-l989 winter season in Kangwon province. Freezing measuring instrument was made with acrylic pipes which were consisted of inner and outer parts. Inner pipe was filled with 0.01 % methylene blue solution and rubber hose to protect pipe breakdown by solution freezing. Freezing measurements were carried out by observing discoloration of methylene blue solution. Moisture content of evergreen trees and ground cover plants was also examined in the winter season. The observed results are as follows: 1.In the land of I OOM above sea level, soil freezing depth became deeper as the sum of Accumulated degree-days of temperature below 0˚C(0˚C . day) increased: Soil freezing depth was 30-40cm at l00˚C, 42-43cm at 150˚C, and 47cm at 200˚C day 2.Soil freezing with vinyl mulching was less developed by l3cm at l00˚C with sum of subzero temperature, by l7cm at 200˚C than that of the bare ground. Soil of rich hulls mulching with 4Ocm was not frozen until soil freezing at the bare ground was developed to 25cm depth. 3.Cashmeron mulching was more effective than felt mulching in the heat insulation of soil. 4.Thawing of soil was done from the lowest part of the frozen in the ground to upward in the beginning and after that it was done from the surface of frozen soil to downward. Finally thawing was completed at the middle of frozen soil.

  • PDF

Spatial Distribution of Fine Roots in Quercus mongolica and Quercus acutissima Stands (신갈나무와 상수리나무 숲에서 細根의 空間分布)

  • Kwak, Young-Se;Kim, Joon-Ho
    • The Korean Journal of Ecology
    • /
    • v.17 no.2
    • /
    • pp.113-119
    • /
    • 1994
  • Vertical and horizontal distribution and seasonal changes of fine roots as well as inorganic nitrogen content in soil were determined in Quercus mongolica and Quercus acutissima stands in Mt. Taemosan, Seoul. The vertical distribution of fine rooth phytomass showed a power-functional decrease as descending soil depth. Fine root phytomass was 170 g $DM/m^2$(46%) and 225 g $DM/m^2$(47%) in top soil of 5 cm depth, and 370 g $DM/m^2$ and 480 g $DM/m^2$ from soil surface to 50 cm depth in Q. mongolica and Q. acutissima stands, respectively. Fine roots in relation to the distance from the nearest tree were evenly distributed horizontally in both stands. Fine roots phytomass in top soil of 5 cm depth reached a peak in June, and thereafter decreased gradually in both stands. Patterns of seasonal changes in fine root phytomass were closely related to inorganic nitrogen and moisture content.

  • PDF

Post-buckling analysis of piles by perturbation method

  • Zhao, M.H.;He, W.;Li, Q.S.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.2
    • /
    • pp.191-203
    • /
    • 2010
  • To investigate the critical buckling load and post-buckling behavior of an axially loaded pile entirely embedded in soil, the non-linear large deflection differential equation for a pinned pile, based on the Winkler-model and the discretionary distribution function of the foundation coefficient along pile shaft, was established by energy method. Assuming that the deflection function was a power series of some perturbation parameter according to the boundary condition and load in the pile, the non-linear large deflection differential equation was transformed to a series of linear differential equations by using perturbation approach. By taking the perturbation parameter at middle deflection, the higher-order asymptotic solution of load-deflection was then found. Effect of ratios of soil depth to pile length, and ratios of pile stiffness to soil stiffness on the critical buckling load and performance of piles (entirely embedded and partially embedded) after flexural buckling were analyzed. Results show that the buckling load capacity increases as the ratios of pile stiffness to soil stiffness increasing. The pile performance will be more stable when ratios of soil depth to pile length, and soil stiffness to pile stiffness decrease.

Analysis of radon depth profile in soil air after a rainfall by using diffusion model

  • Maeng, Seongjin;Han, Seung Yeon;Lee, Sang Hoon
    • Nuclear Engineering and Technology
    • /
    • v.51 no.8
    • /
    • pp.2013-2017
    • /
    • 2019
  • The radon concentrations in soil air were measured before and after a rainfall. 226Ra concentration, porosity, moisture content and temperature in soil were measured at Kyungpook National University in Daegu. As the results of measurement and analysis, the arithmetic mean of measured 222Rn concentration increased from 12100 ± 500 Bq/㎥ to 16200 ± 600 Bq/㎥ after the rainfall. And the measured 226Ra concentration was 61.4 ± 5.7 Bq/kg and the measured porosity was 0.5 in soil. The estimated values of 226Ra concentration and porosity using diffusion model of 222Rn in soil were 60.3 Bq/kg and 0.509, respectively. The estimated values were similar to the measured values. 222Rn concentration in soil increased with depth and moisture content. The estimations were obtained through fitting based on the diffusion model of 222Rn using the measurement values. The measured depth profiles of 222Rn were similar to the calculated depth profiles of 222Rn in soil. We hope that the results of this study will be useful for environmental radiation analysis.

An analytical Study on the Influence length of SCP Method (측방이동 대책공법(SCP)의 영향범위 산정에 관한 해석적 연구)

  • Lee, Young-Keun;Park, Chun-Sik;Kim, Jong-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09b
    • /
    • pp.152-160
    • /
    • 2010
  • In this study, cohesion of soft ground, soft ground depth and embankment height varying conditions, such as the impact of each condition after the calculation of the range, SCP was performed to evaluate the applicability of the method. Reinforcing effects of scope, and permit lateral movement of SCP 2D and 3D analysis of the program were calculated by the displacement ratio, the result follows. The height and depth of soft soil embankment with increasing and decreasing the cohesion tends to be affected were long range, SCP method applied by the finite element analysis Cu = 1.0tf/$m^2$, embankment height is 3.0m depth of soft soil can be applied in a less than 5.0m, and Cu = 3.0tf/$m^2$, embankment height, the soft soil depth is 3.0m 12.0m, Cu = 3.0tf/$m^2$, embankment height is 5.0m less than 7.0m depth of soft soil can be applied in was. And Cu = 5.0tf/$m^2$, embankment height is 3.0m below 15.0m depth rouge anti Floor, Cu = 3.0tf/$m^2$, embankment height of 5.0m 12.0m depth below the soft soil, Cu = 5.0tf/$m^2$, If the depth of soft soil embankment height of 7.0m and below 5.0m was applicable.

  • PDF

The degradation characteristics of waste cigarette filter in outdoor (실외에서 발생되는 폐 담배필터의 분해특성)

  • 김주학;윤오섭;이문수
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.21 no.2
    • /
    • pp.136-143
    • /
    • 1999
  • This study was conducted to evaluate the degradation characteristics of waste cigarette filters under 0, 5, 10, and 15cm in depth from soil surface by environmental conditions. Weather was the most important factor during degradation of waste cigarette filters in this study. Bulking of cellulose acetate filaments exposed on soil surface was observed after 2 months, but the form of filter was kept up after 12 months. The treated cigarette filters in soil landfill revealed a little different degradation pattern at each soil landfill depth, The sample in 5cm depth of soil was more degraded then other site. A fluffy appearance of cellulose acetate filaments in the control filter rods was also developed more strongly in soil landfill then on soil surface. From the observation of waste cigarette filters by scanning electron microscopy, much degradation of the fiber of waste cigarette filters could be ascertained in soil landfill. The weight of waste cigarette filters under 5cm from soil surface was reduced about 50%, and the tensile strength of the samples in soil surface and under 5cm from soil surface were reduced 66.0% and 92.4%, respectively. The microbial experiment date that the viable cell number in microbial population and cellulolytic microorganisms showed the maximum values under 5cm from soil surface, suggest that microorganisms in soil play an important roll in the degradation of acetate cigarette filters.

  • PDF

Application of Analysis Models on Soil Water Retention Characteristics in Anthropogenic Soil (인위적으로 변경된 토양에서의 수분보유특성 해석 모형의 적용)

  • Hur, Seung-Oh;Jeon, Sang-Ho;Han, Kyung-Hwa;Jo, Hee-Rae;Sonn, Yeon-Kyu;Ha, Sang-Keun;Kim, Jeong-Gyu;Kim, Nam-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.823-827
    • /
    • 2010
  • This study was conducted to assess the propriety of models for soil water characteristics estimation in anthropogenic soil through the measurement of soil water content and soil water matric potential. Soil profile was characterized with four different soil layers. Soil texture was loamy sand for the first soil layer (from soil surface to 30 cm soil depth), sand for the second (30~70 cm soil depth) and the third soil layers (70~120 cm soil depth), and sandy loam for the fourth soil layer (120 cm < soil depth). Soil water retention curve (SWRC), the relation between soil water content and soil water matric potential, took a similar trend between different layers except the layer of below 120 cm soil depth. The estimation of SWRC and air entry value was better in van Genuchten model by analytical method than in Brooks-Corey model with power function. Therefore, it could be concluded that van Genuchten model is more desirable than Brook-Corey model for estimating soil water characteristics of anthropogenic soil accumulated with saprolite.

Performance Test of a Real-Time Measurement System for Horizontal Soil Strength in the Field

  • Cho, Yongjin;Lee, DongHoon;Park, Wonyeop;Lee, Kyouseung
    • Journal of Biosystems Engineering
    • /
    • v.41 no.4
    • /
    • pp.304-312
    • /
    • 2016
  • Purpose: Soil strength has been measured using a cone penetrometer, which is making it difficult to obtain the spatial data required for precision agriculture. Our objectives were to evaluate real-time horizontal soil strength (RHSS) to measure soil strength in real time while moving across the field. Using the RHSS data, the tillage depth was determined, and the power consumption of a tractor and rotavators were compared. Methods: The horizontal soil-strength index (HSSI) obtained by the RHSS was compared with the cone index (CI), which was measured using a cone penetrometer. Comparison analysis in accordance with the measurement depth that increased at 5-cm interval was conducted using kriged maps at six sensing depths. For tillage control and evaluation of the power consumption, the system was installed with a potentiometer for tillage depth, a torque sensor from the rear axle, and a power take-off (PTO) shaft. Results: The HSSI was lower than the CI, but they were the same at 54.81% of the total grids for the 5-cm depth and at 3.85% for the 10-cm depth. In accordance with the recommended tillage map, tillage operations between 0 and 15 cm left 2.3% and 7% residue cover on the soil, and that between 20 and 10 cm covered a wider utilization of 3% and 18.4%, respectively. When the tillage depth was 15 cm, the comparison result of the power requirements between the PTO and rear axle in terms of control performance revealed that the maximum power requirements of the axle and PTO were 44.63 and 23.24 kW, respectively. Conclusions: An HSSI measurement system was evaluated by comparison with the conventional soil strength measurement system (CI) and applied to a tractor to compare the tillage power consumption. Further study is needed on its application to various farm works using a tractor for precision agriculture.