• Title/Summary/Keyword: Soil Analysis

검색결과 8,339건 처리시간 0.033초

유역단위 유출 모형 별 기저유출 분석 기법 검토 (A Review of Baseflow Analysis Techniques of Watershed-Scale Runoff Models)

  • 한정호;류태상;임경재;정영훈
    • 한국농공학회논문집
    • /
    • 제58권4호
    • /
    • pp.75-83
    • /
    • 2016
  • Streamflow is composed of baseflow and direct runoff. However, most of streamflow during dry seasons depends on baseflow. Thus, baseflow analysis is very important to simulate streamflow of dry seasons. Generally, baseflow analysis is conducted using watershed-scale runoff models due to diffilculty of measuring baseflow. However, it is needed to understand and review how the model simulates baseflow because each model uses inherent baseflow analysis techniques. In this study, SWAT, HSPF, PRMS-IV were reviewed focusing on baseflow and soil water. HSPF and PRMS-IV calculate baseflow using the variables which depends on user, so the baseflow analysis results of HSPF and PRMS-IV are not consistent. Moreover, soil structures which were assumed from HSPF and PRMS-IV, since these two models assume soil structure as two soil zones and three conceptual reservoirs, were not enough to describe real soil structure. On the other hand, baseflow in SWAT is calculated using baseflow recession constant which can consider the characteristics of aquifer and also, soil structure in SWAT is similar to real soil structures. Thus, baseflow analysis result from SWAT was concluded as the most suitable and reliable model because SWAT can reflect the characteristics and soil structure which is close to reality.

유한요소-경계요소 조합에 의한 지반-말뚝 상호작용계의 주파수 응답해석

  • 김민규;조석호;임윤목;김문겸
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.443-450
    • /
    • 2000
  • In this study a numerical method for soil-pile interaction analysis buried in multi-layered half planes is presented in frequency domain using FE-BE coupling. The total soil-pile interaction system is divided into two parts so called far field and near field beam elements are used for modeling a pile and coupled with plain strain elements for soil modeling. Boundary element formulation using the multi-layered dynamic fundamental solution is adopted to the far field and coupled with near field modeled by finite elements. In order to verify the proposed soil-pile interaction analysis method the dynamic responses of a pile on multi-layered dynamic fundamental solution is adopted to the far field and coupled with near field modeled by finite elements. In order to verify the proposed soil-pile interaction analysis method the dynamic responses of a pile on multi-layered half-planes are performed and compared with experiment results. Through this developed method the dynamic response analysis of a pile buried in multi-layered half planes can be calculated effectively in frequency domain.

  • PDF

기초지반강성을 고려한 철골 건축구조물의 비선형 지진해석 (Nonlinear Seismic Analysis of Steel Structure Buildings Considering the Stiffnesses of the Foundation-Soil System)

  • 오영희;김용석
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2005년도 학술발표회 논문집
    • /
    • pp.137-144
    • /
    • 2005
  • Seismic responses of a building are affected due to the site soil conditions. In this study, linear time history seismic analysis and nonlinear pushover static seismic analysis were performed to estimate the base shear forces of the 3, 5 and 7-story steel structure buildings considering the rigid and soft soil conditions. According to the study results, the steel structure buildings designed for the gravity loads and wind load showed the elastic responses with the moderate earthquake of 0.11g, and the soft soil layer increased the displacement and the base shear force of a building. Therefore it is more resonable to perform an elastic seismic analysis of a building structure with the moderate earthquakes considering the characteristics of the soft soil layer.

  • PDF

연약지반 무한궤도차량의 다물체 동적거동 해석 (Multibody Dynamic Analysis of a Tracked Vehicle on Soft Cohesive Soil)

  • 김형우;홍섭;최종수;여태경
    • 한국해양공학회지
    • /
    • 제21권1호
    • /
    • pp.69-74
    • /
    • 2007
  • This paper is concerned about the dynamic analysis of an underwater test miner, which operates on cohesive soil. The test miner consists of tracked vehicles and a pick-up device. The motion of the pick-up device, relative to the vehicle chassis, is controlled by two pairs of hydraulic cylinders. The test miner is modeled by means of commercial software. A terramechanics model of cohesive soft soil is implemented with the software and applied to a dynamic analysis of the test miner model. The dynamic responses of the test miner are studied with respect to four different types of terrain conditions.

Data-driven modeling of optimal intensity measure of soil-nailed wall structures

  • Massoumeh Bayat;Mahdi Bayat;Mahmoud Bayat
    • Structural Engineering and Mechanics
    • /
    • 제86권1호
    • /
    • pp.85-92
    • /
    • 2023
  • This article examines the seismic vulnerability of soil nail wall structures. Detailed information regarding finite element modeling has been provided. The fragility function evaluates the relationship between ground motion intensities and the probability of surpassing a specific level of damage. The use of incremental dynamic analysis (IDA) has been applied to the soil nail wall against low to severe ground motions. In the nonlinear dynamic analysis of the soil nail wall, a set of twenty seismic ground motions with varying PGA ranges are used. The numerical results demonstrate that the soil-nailed wall reaction is extremely sensitive to earthquake ground vibrations under different intensity measures (IM). In addition, the analytical fragility curve is provided for various intensity values.

An analytical approach for offshore structures considering soil-structure interaction

  • Ali Sari;Kasim Korkmaz
    • Advances in Computational Design
    • /
    • 제9권1호
    • /
    • pp.25-38
    • /
    • 2024
  • This paper presents an advanced analytical approach for the design and analysis of fixed offshore structures with soil structure interaction considered. The proposed methodology involves conducting case studies to illustrate and assess the structural response of a structure considering seven different earthquakes, with the primary goal of ensuring there is no global collapse in the structures. The case studies focus on developing a model for structural analysis and its topside, incorporating nonlinear axial and lateral springs to capture soil-pile interaction. Additionally, mass and damping ratios are considered through the use of dashpots in the analyses. Finite Element Software was employed for structural analyses with detailed modeling, with soil spring nodes applied in the entire structure across various depths. After the finite element analysis was carried out, a sensitivity analysis was conducted to quantify and report the effects of different parameters.

1년 동안 서울지역 토양에 매설된 스테인리스강의 부식 (Corrosion of Stainless Steel Pipes Buried in the Soils of Seoul Metropolitan During One Year)

  • 현영민;김희산;김영호;장현정;박영복;최영준
    • Corrosion Science and Technology
    • /
    • 제11권2호
    • /
    • pp.56-64
    • /
    • 2012
  • Factors affecting corrosion of stainless steels such as pH, oxidation and redox potential (ORP), soil resistivity, water content of soil, chloride ion concentration, bacteria activity, and corrosion potential have been investigated using soil analysis, bacterial analysis, surfacial analysis, and analysis of corrosion potentials of several stainless steels buried in 8 sites of Seoul metropolitan for one year. Corrosion potential was affected by occurrance of corrosion as well as bacteria activity but the behavior of corrosion potential with time is different depending on occurrance of corrosion and bacteria activity. The main factor affecting corrosion of stainless steels in soil is level of chloride ion concentration which is also a main factor affecting corrosion of stainless steels in chloride containing drinkable water. Furthermore, guideline of stainless steels in drinkable water is concluded to be applicable to that in soil by the results from surfacial analysis.

GC-MS/Ms Analysis of Benzo(a)pyrene by Ion Trap Tandem Mass Spectrometry

  • Nam, Jae-Jak;Lee, Sang-Hak
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권8호
    • /
    • pp.1097-1102
    • /
    • 2002
  • The mass spectrometry using an ion trap tandem mass spectrometer has been investigated to find optimum conditions for the analysis of benzo(a)pyrene (3,4-benzpyrene). The applicability to a real soil sample was also investigated to verify the usef ulness of the MS/MS (or collision induced dissociation, CID) analysis. The optimum CID condition was 1.5 and 0.45 for the RF excitation voltage and the q value, respectively. For comparison, CID and EI were applied to the analysis of a soil sample. CID analysis was more sensitive than EI analysis of the soil sample. The limit of detection (LOD) of benzo(a)pyrene was 3.18 ng mL-1 and 0.85 ng mL,-1 for EI and MS/MS analysis, respectively. The precision at the soil sample for EI and CID showed relative standard deviations of 6.1% and 4.1%, respectively, and the concentrations were 168 ㎍ kg-1 and 162 ㎍ kg-1 , respectively.

GIS를 이용한 사방댐의 토사유실 저감효과 분석 (Efficiency of Soil Erosion to a Debris Barrier using GIS)

  • 이근상;이명진;홍현정;황의호
    • 한국지리정보학회지
    • /
    • 제10권1호
    • /
    • pp.158-168
    • /
    • 2007
  • 본 연구에서는 소양호유역의 탁수 및 토사유실 저감을 위해 수립중인 다양한 대책중 산림청과 지자체를 중심으로 계획중인 사방댐에 대한 저감효과를 분석하였다. 2005년 강우와 GIS 자료를 이용하여 분석한 결과 소양호유역의 토사유실은 4,819,494 ton으로 평가되었으며, 단위토사유실분석에서는 추곡천, 자운천 그리고 오항천이 다른 유역들에 비해 높은 값을 보였다. 94개의 사방댐 지점을 중심으로 GIS 공간분석을 이용하여 사방댐유역을 추출하였으며, 사방댐유역의 토사유실량과 유사운송비를 이용하여 저감효과를 분석한 결과, 2005년 사방댐의 토사유실저감효과는 6.8%(330,203 ton)으로 분석되었다. 또한 사방댐의 위치를 5,000 ton 이상인 지역으로 이동한 시나리오에서의 사방댐의 토사유실저감효과는 10.5%(506,783 ton)으로 증가되었다.

  • PDF

Interaction analysis of a building frame supported on pile groups

  • Dode, P.A.;Chore, H.S.;Agrawal, D.K.
    • Coupled systems mechanics
    • /
    • 제3권3호
    • /
    • pp.305-318
    • /
    • 2014
  • The study deals with the physical modeling of a typical building frame resting on pile foundation and embedded in cohesive soil mass using complete three-dimensional finite element analysis. Two different pile groups comprising four piles ($2{\times}2$) and nine piles ($3{\times}3$) are considered. Further, three different pile diameters along with the various pile spacings are considered. The elements of the superstructure frame and those of the pile foundation are descretized using twenty-node isoparametric continuum elements. The interface between the pile and pile and soil is idealized using sixteen-node isoparametric surface elements. The current study is an improved version of finite element modeling for the soil elements compared to the one reported in the literature (Chore and Ingle 2008). The soil elements are discretized using eight-, nine- and twelve-node continuum elements. Both the elements of superstructure and substructure (i.e., foundation) including soil are assumed to remain in the elastic state at all the time. The interaction analysis is carried out using sub-structure approach in the parametric study. The total stress analysis is carried out considering the immediate behaviour of the soil. The effect of various parameters of the pile foundation such as spacing in a group and number piles in a group, along with pile diameter, is evaluated on the response of superstructure. The response includes the displacement at the top of the frame and bending moment in columns. The soil-structure interaction effect is found to increase displacement in the range of 58 -152% and increase the absolute maximum positive and negative moments in the column in the range of 14-15% and 26-28%, respectively. The effect of the soil- structure interaction is observed to be significant for the configuration of the pile groups and the soil considered in the present study.