• 제목/요약/키워드: Soil Activation

검색결과 100건 처리시간 0.02초

Radiological Assessment of Environmental Impact of the IF-System Facility of the RAON

  • Lee, Cheol-Woo;Whang, Won Tae;Kim, Eun Han;Han, Moon Hee;Jeong, Hae Sun;Jeong, Sol;Lee, Sang-jin
    • Journal of Radiation Protection and Research
    • /
    • 제46권2호
    • /
    • pp.58-65
    • /
    • 2021
  • Background: The evaluation of skyshine distribution, release of airborne radioactive nuclides, and soil activation and groundwater migration were required for radiological assessment of the impact on the environment surrounding In-Flight (IF)-system facility of the RAON (Rare isotope Accelerator complex for ON-line experiment) accelerator complex. Materials and Methods: Monte Carlo simulation by MCNPX code was used for evaluation of skyshine and activation analysis for air and soil. The concentration model was applied in the estimation of the groundwater migration of radionuclides in soil. Results and Discussion: The skyshine dose rates at 1 km from the facility were evaluated as 1.62 × 10-3 μSv·hr-1. The annual releases of 3H and 14C were calculated as 9.62 × 10-5 mg and 1.19 × 10-1 mg, respectively. The concentrations of 3H and 22Na in drinking water were estimated as 1.22 × 10-1 Bq·cm-3 and 8.25 × 10-3 Bq·cm-3, respectively. Conclusion: Radiological assessment of environmental impact on the IF-facility of RAON was performed through evaluation of skyshine dose distribution, evaluation of annual emission of long-lived radionuclides in the air and estimation of soil activation and groundwater migration of radionuclides. As a result, much lower exposure than the limit value for the public, 1 mSv·yr-1, is expected during operation of the IF-facility.

Paromomycin Derived from Streptomyces sp. AG-P 1441 Induces Resistance against Two Major Pathogens of Chili Pepper

  • Balaraju, Kotnala;Kim, Chang-Jin;Park, Dong-Jin;Nam, Ki-Woong;Zhang, Kecheng;Sang, Mee Kyung;Park, Kyungseok
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권9호
    • /
    • pp.1542-1550
    • /
    • 2016
  • This is the first report that paromomycin, an antibiotic derived from Streptomyces sp. AG-P 1441 (AG-P 1441), controlled Phytophthora blight and soft rot diseases caused by Phytophthora capsici and Pectobacterium carotovorum, respectively, in chili pepper (Capsicum annum L.). Chili pepper plants treated with paromomycin by foliar spray or soil drenching 7 days prior to inoculation with P. capsici zoospores showed significant (p < 0.05) reduction in disease severity (%) when compared with untreated control plants. The disease severity of Phytophthora blight was recorded as 8% and 50% for foliar spray and soil drench, respectively, at 1.0 ppm of paromomycin, compared with untreated control, where disease severity was 83% and 100% by foliar spray and soil drench, respectively. A greater reduction of soft rot lesion areas per leaf disk was observed in treated plants using paromomycin (1.0 μg/ml) by infiltration or soil drench in comparison with untreated control plants. Paromomycin treatment did not negatively affect the growth of chili pepper. Furthermore, the treatment slightly promoted growth; this growth was supported by increased chlorophyll content in paromomycin-treated chili pepper plants. Additionally, paromomycin likely induced resistance as confirmed by the expression of pathogenesis-related (PR) genes: PR-1, β-1,3-glucanase, chitinase, PR-4, peroxidase, and PR-10, which enhanced plant defense against P. capsici in chili pepper. This finding indicates that AG-P 1441 plays a role in pathogen resistance upon the activation of defense genes, by secretion of the plant resistance elicitor, paromomycin.

논 토양 및 현미중 Imidacloprid의 잔류성 (Residue of Imidacloprid in Hulled Rice and Paddy Soil)

  • 문영희;양희혁
    • 한국환경농학회지
    • /
    • 제18권4호
    • /
    • pp.384-387
    • /
    • 1999
  • 논 토양과 현미 중 살충제 imidacloprid의 잔류성을 조사한 결과는 다음과 같다. 실내 조건의 토양 중 imidacloprid의 분해속도는 1차 반응식에 따랐으며 토양온도 및 토양 종류에 크게 영향을 받았다. $18-23^{\circ}C$의 토양중 imidacloprid의 반감기는 증식토에서 66.7-96.3일, 식양토에서 56.8-117.5일이었다. Arrhenius activation energy는 증식토에서 25.5KJ/mol, 식양토에서 50.3KJ/mol이었다. 포장조건하의 토양 중 imidacloprid의 분해는 처리 초기에는 매우 빨랐으나 점점 분해속도가 느려 1차반감기는 약 10일 정도이었으나 2차, 3차 반감기는 점점 길어져 처리량의 90%까지 분해되는데는 약 120일이 소요되었다. 현미 중 imidacloprid의 잔류량은 검출한계 0.01ppm이하이었다.

  • PDF

녹조류와 적니의 이산화탄소환경 공동열분해를 통한 탄소-철 복합체 생성 및 과황산염 활성화를 통한 수중 염료 제거 (Fabrication of Metal-biochar Composite through CO2 Assisted Co-pyrolysis of Chlorella and Red Mud and Its Application for Persulfate Activation)

  • 장희진;권기훈;윤광석;송호철
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제27권1호
    • /
    • pp.31-38
    • /
    • 2022
  • The common algae and industrial waste, chlorella and red mud, were co-pyrolyzed in carbon dioxide condition to fabricate iron-biochar composite. In order to investigate the direct effect of chlorella and red mud in the syngas generation and the property of biochar, experiments were performed using mixture samples of chlorella and red mud. The evolution of flammable gasses (H2, CH4, CO) was monitored during pyrolysis. The produced biochar composite was employed as a catalyst for persulfate activation for methylene blue removal. BET analysis indicated that the iron-biochar composite mainly possessed meso- and macropores. The XRD analysis revealed that hematite (Fe2O3) contained in red mud was transformed to Fe3O4 during co-pyrolysis. The composite effectively activated persulfate and removed methylene blue. Among the composite samples, the composite fabricated from the mixture composed of 1:2 chlorella:red mud showed the best performance in syngas generation and methylene blue removal.

Degradation of Chlorinated Organic Compounds by Zero Valent Metals and an Electron carrier

  • Kim, Young-Hun
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2001년도 총회 및 춘계학술발표회
    • /
    • pp.53-56
    • /
    • 2001
  • The degradation of tetrachloroethene (PCE) and trichloroethene (TCE) by vitamin B$_{12}$, an electron mediator was examined when zero valent metals (ZVMs) were used as built electron donors. Dechlorination of PCE and TCE by iron and zinc in the presence of vitamin B$_{12}$ showed that the zinc and vitamin B$_{12}$ combination greatly enhances the reaction rates for both PCE and TCE, but iron and vitamin B$_{12}$ result in an increase in reactivity only for PCE degradation, not for TCE degradation in comparing with meta]s only. This result indicates vitamin B$_{12}$(I) Is active towards both PCE and TCE degradation while vitamin B$_{12}$(II) is active towards both PCE. Calculated activation energies for the dechlorination of PCE in the presence of Vitamin B$_{12}$ showed that vitamin B$_{12}$ lowered the activation energy about 40-60 kJ/㏖ for the both metals.the both metals.

  • PDF

토양(土壤)중 살충제(殺蟲劑) ethoprophos의 분해성(分解性) 및 이동성(移動性)의 측정(測定)과 예측(豫測)에 관한 모델 연구(硏究) (Simulation and Measurement of Degradation and Movement of Insecticide Ethoprophos in Soil)

  • 문영희;김윤태;김영석;한수곤
    • 한국환경농학회지
    • /
    • 제12권3호
    • /
    • pp.209-218
    • /
    • 1993
  • 토양(土壤)중에 있어서 살충제(殺蟲劑) ethoprophos의 행동특성(行動特性)을 조사(調査)한 결과(結果)를 요약(要約)하면 다음과 같다. 실내조건(室內條件)중의 토양(土壤)중 ethoprophos분해(分解)는 일차반응식(一次反應式)에 따랐으며, 반감기(半減期)는 10, 18, $25^{\circ}C$ 에서 각각 12.4, 5.5, 2.5일이었고, Arrhenius activation energy는 73.8 KJ/mol이었다. 수분함량(水分含量)이 7, 14, 19%인 토양(土壤)에서 ethoprophos의 반감기(半減期)는 각각 46.4, 17.6, 6.9일이었으며 Empirical방정식에서 수분의존도(水分依存度)(B)값은 1.67이었다. Ethoprophos의 토양(土壤)중 흡착등온선(吸着等溫線)은 Freundlich식(式)에 따랐으며 흡착분배계수(吸着分配係數)(Kd)값은 0.27이었다. Mini-lysimeter를 이용한 실외조건(室外條件)하의 이동실험(移動實驗)에서 ethoprophos는 대부분이 $0{\sim}2cm$층위(層位)에 분포(分布)되었으며 6cm층위(層位)까지 이동(移動)되었다. 실외포장(室外圃場)에서 ethoprophos의 분해(分解)는 기상변화(氣象變化)와 밀접한 관계를 보였으며, 3월과 10월의 처리에서 반감기(半減期)는 각각 17일과 5일 정도이었고, 처리 후 약 37일에는 90%까지 분해(分解) 소실(消失)되었다. 토양(土壤)중 농약(農藥)의 행동(行動) 예측(豫測) computer model에 의한 ethoprophos의 이동성(移動性)과 잔유성(殘留性)의 예측치(豫測値)는 분석치(分析値)와 유사(類似)하였다.

  • PDF

Ex-situ 화학적 산화처리 적용을 위하여 다양하게 활성화(heat, Fe2+, UV)된 persulfate를 이용한 TCE 분해에 대한 연구 (Degradation of TCE by Persulfate Oxidation with Various Activation Methods (heat, Fe2+, and UV) for ex-situ Chemical Oxidation Processes)

  • 김한솔;도시현;박기만;조영훈;공성호
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제17권6호
    • /
    • pp.43-51
    • /
    • 2012
  • Rreactivity of persulfate (PS) for oxidation of TCE under various conditions such as heat, $Fe^{2+}$, and UV was investigated. It was found that degradation rate of TCE increased with increasing temperature from 15 to $35^{\circ}C$. At pH 7.0, the rate constants (k) at 15, 25, 30, and $35^{\circ}C$ were 0.07, 0.30, 0.74, and $1.30h^{-1}$, respectively. For activation by $Fe^{2+}$, removal efficiency of TCE increased with increasing $Fe^{2+}$ concentration from 1.9 mM to 11 mM. The maximum removal efficiency of TCE was approximately 85% when pH of the solution dropped from 7.0 to 2.5. Degradation of TCE by UV-activated PS was the most effective, showing that the degradation rate of TCE increased with inreasing PS dosage; the rate constants (k) at 0.5, 2.5, and 10 mM were 34.2, 40.5, and $55.9h^{-1}$, respectively. Our results suggest that PS activation by UV/PS process could be the most effective in activation processes tested for TCE degradation. For oxidation process by PS, however, pH should be observed and adjusted to neutral conditions (i.e., 5.8-8.5) if necessary.

Fe(II)에 의해 활성화된 과황산을 이용한 페놀 오염 퇴적물 처리 타당성 평가 (Feasibility Study of Activation of Persulfate by Fe(II) for Phenol Contaminated Sediment)

  • 조재현;윤성은;김재문;황인성
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제25권4호
    • /
    • pp.77-86
    • /
    • 2020
  • Persulfate-based advanced oxidation processes (AOPs) can oxidize various organic pollutants. In this study, persulfate/Fe(II) system was utilized in phenol removal, and the effect of various organic and inorganic chelators on Fe(II)-medicated persulfate activation was investigated. The feasibility of persulfate/Fe(II)/chelator in cleanup of phenol-contaminated sediment was confirmed through toxicity assessment. In persulfate/Fe(II) conditions, the rate and extent of phenol removal increased in proportion to persulfate concentration. In chelator injection condition, the rate of phenol removal was inversely proportional to chelator concentration when it was injected above optimum ratio. Thiosulfate showed greater chelation tendency with persulfate than citrate and interfered with persulfate access to Fe(II), making the latter a more suitable chelator for enhancing persulfate activation. In contaminated clay sediment condition, 100% phenol removal was obtained within an hour without chelator, with the removal rate increased up to four times as compared to the rate with chelator addition. A clay sediment toxicity assessment at persulfate:Fe(II):phenol 20:10:1 ratio indicated 71.3% toxicity reduction with 100% phenol removal efficiency. Therefore, persulfate/Fe(II) system demonstrated its potential utility in toxicity reduction and cleanup of organic contaminants in sediments.

과황산의 열적활성화 및 염소계용제의 산화분해 (Oxidation of Chloroethenes by Heat-Activated Persulfate)

  • 장하이롱;권희원;최정학;김영훈
    • 한국환경과학회지
    • /
    • 제26권11호
    • /
    • pp.1201-1208
    • /
    • 2017
  • Oxidative degradation of chlorinated ethenes was carried out using heat-activated persulfate. The activation rate of persulfate was dependent on the temperature and the activation reaction rate could be explained based on the Arrhenius equation. The activation energy of persulfate was 19.3 kcal/mol under the assumption that the reaction between the sulfate radical and tricholoroethene (TCE) is very fast. Activation could be achieved at a moderate temperature, so that the adverse effects due to high temperature in the soil environment were mitigated. The reaction rate of TCE was directly proportional to the concentration of persulfate, indicating that the remediation rate can be controlled by the concentration of the injected persulfate. The solution was acidized after the oxidation, and this was dependent on the oxidation temperature. The consumption rate of persulfate was high in the presence of the target organic, but the self-decomposition rate became very low as the target was completely removed.

동토지역 파이프라인 설계/시공에 따른 발생 데이터의 관리방안에 관한 기초연구 (A Fundamental Study on Management Plan of Occurrence Data in Accordance with Engineering & Construction of Pipeline in Frozen Soil Region)

  • 김창한;원서경;이준복;한충희
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 춘계 학술논문 발표대회
    • /
    • pp.20-21
    • /
    • 2014
  • Recently, activation of related construction projects due to the large traditional gas resource development of frozen soil region of Russia are expected. It is necessary to provide a plan that can be utilized and collectively managed the occurrence data in the engineering & construction stage for continued contracts of the pipe construction. Therefore, this research is aimed to provide a management plan of occurrence data for efficient management in engineering & construction stage of pipeline business in frozen soil region. The data of the engineering & construction(related pipe construction projects) can be accumulated each version and multiply managed. Furthermore, I will be expected to be the foundation of the systematic management of the classifying based on metadata and the optimizing operations using big data method.

  • PDF