• Title/Summary/Keyword: Soil $CO_2$ evolution

Search Result 43, Processing Time 0.028 seconds

Studies on the Denitrification in the Submerged Paddy Soil -IV. Influences of soil organic matter contents, soil temperature, pH values, kinds and levels of N-fertilizer on the evolution of N2O gas (논토양(土壤)의 탈질작용(脫窒作用)에 관(關)한 연구(硏究) -제(第)4보(報) 토양유기물함량(土壤有機物含量), 온도(溫度), pH, 질소비종(窒素肥種) 및 시비량(施肥量)이 탈질작용(脫窒作用)에 미치는 영향(影響))

  • Lee, Sang Kyu;Kim, Seung Hwan;Park, Jun Kyu;An, Sang Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.1
    • /
    • pp.55-61
    • /
    • 1987
  • A series of laboratory experiments were carried out to find the effects of soil organic matter contents, soil temperature, pH values, kinds and amount of nitrogen fertilizers on the denitrification-$N_2O$ gas evolution-. The results obtained were summarized as follows: 1. Denitrification rate, amount of $N_2O$ gas evolution, was influenced the order of organic matter contents>soil temperature>pH values>kinds of N-fertilizer>levels of N-fertilizer. 2. The highest dentrification rate was observed in organic matter content of 3.0%, pH values at 6.0 with application of $KNO_3$ at levels of 20 mgN/100g soil. 3. For the evolution of I mole $N_2O$ gas, averaged carbon consumption was obtained as 0.5 mole in all these experiment condition. However, the highest carbon consumption rate was obtained in organic matter contents for 1.0% with application of $(NH_4)_2SO_4$ at levels of 10 mgN/100g soil (1.06 mole) while lowest carbon consumption rate was obtained in organic matter contents for 3.0% with application of $KNO_3$ at levels of 20 mgN/100g soil (0.13 mole). 4. According to Michaelis-Menten's equation, the V/2 values for evolution of $N_2O$ gas was estimated by progress curve. The results obtained was as 550 ug for $(NH_2)_2CO$ and 1100 ug $N_2O/100g$ soil by application of $KNO_3$ in organic matter contents of 1.0% soil. On the other hand, when the application $(NH_4)_2SO_4$ the V/2 values of $N_2O$ gas was obtained as the amount of 490 ug/100g soil while V/2 values of $N_2O$ gas by application of $KNO_3$ was on the linear line in soil organic matter contents of 3.0%.

  • PDF

Effects of Paper Sludge Application on the Chemical Properties of Paddy Soil and Growth of Paddy Rice;IV. Effects of Paper Sludge Application on the Seasonal Variations of Volatie Lower Fatty Acids in Paddy Soil (제지(製紙)슬러지의 시용(施用)이 논 토양(土壤)의 화학성(化學性)과 수도생육(水稻生育)에 미치는 영향(影響);IV. 슬러지시용(施用)이 토양중(土壤中) 휘발성저급지방산변화(揮發性低級脂肪酸變化)에 미치는 영향(影響))

  • Heo, Jong-Soo;Kim, Kwang-Sik;Ha, Ho-Sung
    • Korean Journal of Environmental Agriculture
    • /
    • v.7 no.1
    • /
    • pp.34-42
    • /
    • 1988
  • To investigate the effects of paper sludge on seasonal variations of volatile lower fatty acids in paddy soil, paper sludge was applied to pots at the rate of either 300, 600, 900 or 1,200 kg/l0a which was either preadjusted at a C/N ratio of 30 : 1 or not adjusted. The decomposition rate of paper sludge, the evolution of $CO_2$, and the fractions of volatile lower fatty acids in the soil were determined. The results are summarized as follows: 1. Paper sludge was decomposed to $35{\sim}44%$, and its C/N ratio was $55{\sim}82$, respectively, at 120 days after treatment. 2. The evolution of $CO_2$, in the soil was proportional to the amount of paper sludge added. Significant positive correlations were observed the $CO_2$ evolution was compared with the decomposition rate of paper sludge, and volatile fatty acid contents in soil. 3. Acetic, propionic, butyric, i-butyric, valeric and i-valeric acids were identified in all the soils investigated. The content of the total volatile fatty acids in the soil increased with as the application of paper sludge increased. The formation of the acids was the highest at 25 days after treatment, and thereafter the contents of the acids decreased as time elapsed. 4. The volatile fatty acids in the soil inhibited the growth of paddy rice in early stages. The contents of acetic, propionic and i-valeric acids in the soil negatively, correlated with the uptake of N, $P_2O_5$, $K_2O$, CaO, MgO and $SiO_2$ in the paddy rice at 25 days after transplantation. In addition, the uptake of $P_2O_5$ and CaO in the paddy rice negatively correlated with the content of butyric acid in the soil. 5. The content of total volatile fatty acids positively correlated with the content of $Fe^{++}$ and $Mn^{++}$ in the soil at 25 days after transplantation. A significantly positive correlation was observed between $Fe^{++}$ and acetic acid contents in the soil.

  • PDF

Effects of Soil Types on the Biodegradation of Crude Oil by Nocardia sp. H17-1

  • Yoon, Byung-Dae;Baek, Kyung-Hwa;Kim, Hee-Sik;Moon, Seong-Hoon;Lee, In-Sook;Oh, Hee-Mock
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.901-905
    • /
    • 2004
  • The degradation and mineralization of crude oil were investigated over 50-days in three soils, loamy sand, sand, and combusted loamy, which were artificially contaminated with crude oil (50 g $kg^{-1}$) and inoculated with Nocardia sp. H17-1. The degradation efficiency of total petroleum hydrocarbon (TPH) in sand was the highest at 76% among the three soils. The TPH degradation rate constants $(k_{TPH})$ in loamy sand, sand, and combusted loamy sand were 0.027 $d^{-1}$, 0.063 $d^{-1}$, and 0.016 $d^{-1}$, respectively. In contrast, the total amount of $CO_2$ evolved was the highest at 146.1 mmol in loamy sand. The $CO_2$ evolution rate constants (k_{CO2})$ in loamy sand, sand, and combusted loamy sand were 0.057 $d^{-1}$, 0.066 $d^{-1}$, and 0.037 $d^{-1}$, respectively. Therefore, it seems that the degradation of crude oil in soils can be proportional to the soil pore space and that mineralization can be accelerated with the increase of organic substance.

A Study on the Soil Respiration in Cutting and Uncutting Areas of Larix leptolepis Plantation (잎갈나무조림지의 벌목지와 비벌목지의 토양호흡에 관한 연구)

  • Lee, Kyu-Jin;Mun, Hyeong-Tae
    • Journal of Life Science
    • /
    • v.20 no.9
    • /
    • pp.1353-1357
    • /
    • 2010
  • Quantification of the ecosystem respiration is essential in understanding the carbon cycling of natural and disturbed landscapes. Soil respiration and some environmental factors which affect soil respiration were investigated in a Larix leptolepis plantation inKongju, Korea. Soil respiration was measured at midday of the $15^{th}$ and $30^{th}$ day of every month from May to December in a non-cutting area (Control) and a cutting area (Treatment) with IRGA Soil Respiration Analyzer. Throughout the study period, average soil temperature and water content were $23.3{\pm}0.5^{\circ}C$ and $27.76{\pm}7.12%$ for control, and $25.9{\pm}3.1^{\circ}C$ and $24.55{\pm}5.12%$ for treatment, respectively. There was a positive correlation ($R^2$=0.8905) between soil respiration and soil temperature in the study area. However, there was no significant correlation between soil respiration and soil moisture ($R^2$=0.4437). The seasonal soil respiration increased in the summer and decreased in the winter. In August, maximum soil respirations in the control and treatment areas were $0.82{\pm}0.13$ and $1.32{\pm}0.10$ $gCO_2{\cdot}^{-2}{\cdot}r^{-1}$, respectively. Total amounts of $CO_2$ evolution in the control and treatment areas from May to December in 2008 were 2,419.2 and 3,610.8 $CO_2g{\cdot}m^{-2}$, respectively. The amount of soil respiration in the treatment area was 49.3% greater than in the control. Increased soil respiration in the treatment area may be due to increased soil temperature, which drives increased microbial decomposition. According to our present investigation, forest cutting will increase the atmospheric $CO_2$ by increasing soil respiration.

Fabrication of Metal-biochar Composite through CO2 Assisted Co-pyrolysis of Chlorella and Red Mud and Its Application for Persulfate Activation (녹조류와 적니의 이산화탄소환경 공동열분해를 통한 탄소-철 복합체 생성 및 과황산염 활성화를 통한 수중 염료 제거)

  • Jang, Hee-Jin;Kwon, Gihoon;Yoon, Kwangsuk;Song, Hocheol
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.1
    • /
    • pp.31-38
    • /
    • 2022
  • The common algae and industrial waste, chlorella and red mud, were co-pyrolyzed in carbon dioxide condition to fabricate iron-biochar composite. In order to investigate the direct effect of chlorella and red mud in the syngas generation and the property of biochar, experiments were performed using mixture samples of chlorella and red mud. The evolution of flammable gasses (H2, CH4, CO) was monitored during pyrolysis. The produced biochar composite was employed as a catalyst for persulfate activation for methylene blue removal. BET analysis indicated that the iron-biochar composite mainly possessed meso- and macropores. The XRD analysis revealed that hematite (Fe2O3) contained in red mud was transformed to Fe3O4 during co-pyrolysis. The composite effectively activated persulfate and removed methylene blue. Among the composite samples, the composite fabricated from the mixture composed of 1:2 chlorella:red mud showed the best performance in syngas generation and methylene blue removal.

Studies on the Denitrification in the Submerged Paddy Soil -II. The Denitrification Rates Upon Kinds of Applied Organic Matter and Levels of Nitrogen Fertilizer (논토양(土壤)의 탈질작용(脫窒作用)에 관(關)한 연구(硏究) -제(第)II보(報). 유기물(有機物)의 종류(種類) 및 질소시비량차이(窒素施肥量差異)가 탈질(脫窒)에 미치는 영향(影響))

  • Lee, Sang-Kyu;Kim, Seung-Hwan;Park, Jun-Kyu;An, Sang-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.19 no.1
    • /
    • pp.76-82
    • /
    • 1986
  • A laboratory experiment was conducted to find out the denitrification rate upon the levels of nitrogen and source of organic matter in submerged sandy and sandy loam soil. The results obtained were sumarized as follows; 1. Evolution of nitrous oxide was increased at 1st and 10 days after incubation. And dinitrogen was increased at 1st and 30 days after incubation. Applications of green manure was enhanced the evolution of nitrous oxide ($N_2O$) and dinitrogen ($N_2$). 2. The cumulative denitrification rates at 50 days was high in Gyuam sandy loam soil (O-M: 1.52%) than that of Hamchang sandy soil (O-M: 3.81%). On the other hand, the cumulative emission of dinitrogen was high in Gyuam sandy loam soil while nitrous oxide was high in Hamchang sandy soil. The total mount of denitrification rate was high in order of green manure > rice straw > compost > control soil. 3. Increases of fertilizer nitrogen was enhanced the rate of emission of dinitrogen and nitrous oxide during the incubation time. 4. According to Michaelis-Menten kinetic equation, denitrification rates and reaction efficiency were remarkably increased by application of readily decomposable organic matter with in higher organic matter content of soil. 5. The negative relationship was observed between the evolution of dinitrogen and carbon ($CO_2+CH_4$) while the nitrous oxide with carbon was positive. 6. Under the this experiment conditions 1 mg of carbon was required for production of 4 mg N as $N_2O$ and 3 mg of N as $N_2$, respectively.

  • PDF

Stiffness loss in enzyme-induced carbonate precipitated sand with stress scenarios

  • Song, Jun Young;Sim, Youngjong;Yeom, Sun;Jang, Jaewon;Yun, Tae Sup
    • Geomechanics and Engineering
    • /
    • v.20 no.2
    • /
    • pp.165-174
    • /
    • 2020
  • The enzyme-induced carbonate precipitation (EICP) method has been investigated to improve the hydro-mechanical properties of natural soil deposits. This study was conducted to explore the stiffness evolution during various stress scenarios. First, the optimal concentration of urea, CaCl2, and urease for the maximum efficiency of calcite precipitation was identified. The results show that the optimal recipe is 0.5 g/L and 0.9 g/L of urease for 0.5 M CaCl2 and 1 M CaCl2 solutions with a urea-CaCl2 molar ratio of 1.5. The shear stiffness of EICP-treated sands remains constant up to debonding stresses, and further loading induces the reduction of S-wave velocity. It was also found that the debonding stress at which stiffness loss occurs depends on the void ratio, not on cementation solution. Repeated loading-unloading deteriorates the bonding quality, thereby reducing the debonding stress. Scanning electron microscopy and X-ray images reveal that higher concentrations of CaCl2 solution facilitate heterogeneous nucleation to form larger CaCO3 nodules and 11-12 % of CaCO3 forms at the interparticle contact as the main contributor to the evolution of shear stiffness.

Uptake of the Residues of the Herbicide Bentazon in Soil by Soybean and Radish (토양중(土壤中) 제초제(除草劑) Bentazon 잔류물(殘留物)의 콩과 무우에 의한 흡수(吸收))

  • Lee, Jae-Koo;Cheon, Sam-Yeong;Kyung, Kee-Sung
    • Korean Journal of Environmental Agriculture
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 1988
  • In order to clarify how much of the residues of Bentazon could be taken up by crops, soybean and radish were grown for 28 days in soils containing freshly treated $^{14}C-Bentazon$ and non-extractable soil-hound residues of $^{14}C-Bentazon.$ The results obtained are summarized as follows. 1. $^{14}CO_2$ evolution from $^{14}C$-Bentazon during the 6-month pre-incubation in soil was 14.79% relative to the applied radioactivity. 2. Mineralization of ^$^{14}C$-Bentazon in soil to $^{14}CO_2$ during 28 days of crop growing was much higher in the freshly treated soil than in the bound soil, and much higher in radish than in soybean. 3. The amounts of $^{14}C-Bentazon$ and its metabolites absorbed by soybean and radish were 45.41 and 21.48%, respectively, in freshly treated soil, whereas those were 3.92 and 1.23% in bound soil, respectively. The translocation ratios of radioactivity .from the root to the shoot were much higher in radish than in soybean, remarkably. 4. The uptake ratios of the freshly treated $^{14}C-Bentazon$ to the bound $^{14}C-Bentazon$ by soybean and radish were 12 : 1 and 17 : 1, respectively. 5. It was well verified that the presence of crops enhanced the mineralization to $^{14}CO_2$ and the transformation to polar metabolites of Bentazon.

  • PDF

A Study on the Volatilization of Ammonia from Flooded Soils Mixed with Rice Straw and Liming Materials (담수토양(湛水土壤)에서 볏짚과 석회물질(石灰物質) 시용(施用)이 암모니아 휘산(揮散)에 미치는 영향(影響))

  • Oh, Wang-Keun;Hwang, Kwang-Nam;Lee, Myong-Gu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.15 no.3
    • /
    • pp.166-171
    • /
    • 1982
  • A laboratiory experiment incubated at about $30^{\circ}C$ for 34 days was conducted in order to learn the effect of liming materials and rice straw on the volatilization of ammonia from flooded soils applied with urea. 1. The application of calcium hydroxide and calcium silicate increased buffer action of flood soil, though it resulted in increase in the volatilization of ammonia through raising flooded soil pH containing bicarbonate. 2. The mixing of rice straw powder to soil lowered pH of flooded soil, and decreased the volatilization of ammonia. The effect was particulary large when noliming material was used. 3. Calcium hydroxide depressed the evolution of $CO_2$ in the early days of incubation after flooding, while calcium silicate promoted the ammonification of soil nitrogen from the begining of flooding giving slow change in soil chemical properties. The rice straw was also effective in providing a favorable soil condition for the ammonification rather quickly.

  • PDF

Spectroscopic Characterization of Aqueous and Colloidal Am(III)-CO3 Complexes for Monitoring Species Evolution

  • Hee-Kyung Kim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.4
    • /
    • pp.371-382
    • /
    • 2022
  • Carbonates are inorganic ligands that are abundant in natural groundwater. They strongly influence radionuclide mobility by forming strong complexes, thereby increasing solubility and reducing soil absorption rates. We characterized the spectroscopic properties of Am(III)-carbonate species using UV-Vis absorption and time-resolved laser-induced fluorescence spectroscopy. The deconvoluted absorption spectra of aqueous Am(CO3)2- and Am(CO3)33- species were identified at red-shifted positions with lower molar absorption coefficients compared to the absorption spectrum of aqua Am3+. The luminescence spectrum of Am(CO3)33- was red-shifted from 688 nm for Am3+ to 695 nm with enhanced intensity and an extended lifetime. Colloidal Am(III)-carbonate compounds exhibited absorption at approximately 506 nm but had non-luminescent properties. Slow formation of colloidal particles was monitored based on the absorption spectral changes over the sample aging time. The experimental results showed that the solubility of Am(III) in carbonate solutions was higher than the predicted values from the thermodynamic constants in OECD-NEA reviews. These results emphasize the importance of kinetic parameters as well as thermodynamic constants to predict radionuclide migration. The identified spectroscopic properties of Am(III)-carbonate species enable monitoring time-dependent species evolution in addition to determining the thermodynamics of Am(III) in carbonate systems.